lsamvy过程,广义矩和一致可积性

Pub Date : 2021-02-17 DOI:10.37190/0208-4147.00045
David Berger, Franziska Kuhn, R. Schilling
{"title":"lsamvy过程,广义矩和一致可积性","authors":"David Berger, Franziska Kuhn, R. Schilling","doi":"10.37190/0208-4147.00045","DOIUrl":null,"url":null,"abstract":"We give new proofs of certain equivalent conditions for the existence of generalized moments of a L\\'evy process $(X_t)_{t\\geq 0}$; in particular, the existence of a generalized $g$-moment is equivalent to the uniform integrability of $(g(X_t))_{t\\in [0,1]}$. As a consequence, certain functions of a L\\'evy process which are integrable and local martingales are already true martingales. Our methods extend to moments of stochastically continuous additive processes, and we give new, short proofs for the characterization of lattice distributions and the transience of L\\'evy processes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lévy Processes, Generalized Moments and Uniform Integrability\",\"authors\":\"David Berger, Franziska Kuhn, R. Schilling\",\"doi\":\"10.37190/0208-4147.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give new proofs of certain equivalent conditions for the existence of generalized moments of a L\\\\'evy process $(X_t)_{t\\\\geq 0}$; in particular, the existence of a generalized $g$-moment is equivalent to the uniform integrability of $(g(X_t))_{t\\\\in [0,1]}$. As a consequence, certain functions of a L\\\\'evy process which are integrable and local martingales are already true martingales. Our methods extend to moments of stochastically continuous additive processes, and we give new, short proofs for the characterization of lattice distributions and the transience of L\\\\'evy processes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37190/0208-4147.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37190/0208-4147.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们给出了L’evy过程$(X_t)_{t\geq0}$的广义矩存在的某些等价条件的新证明;特别地,广义$g$-矩的存在性等价于$[(g(X_t))_{t\in[0,1]}$的一致可积性。因此,L’evy过程的某些可积函数和局部鞅已经是真鞅。我们的方法扩展到随机连续加性过程的矩,并为晶格分布和L’evy过程的瞬态性的表征给出了新的、简短的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Lévy Processes, Generalized Moments and Uniform Integrability
We give new proofs of certain equivalent conditions for the existence of generalized moments of a L\'evy process $(X_t)_{t\geq 0}$; in particular, the existence of a generalized $g$-moment is equivalent to the uniform integrability of $(g(X_t))_{t\in [0,1]}$. As a consequence, certain functions of a L\'evy process which are integrable and local martingales are already true martingales. Our methods extend to moments of stochastically continuous additive processes, and we give new, short proofs for the characterization of lattice distributions and the transience of L\'evy processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信