梯子:基于日志的企业系统异常检测和诊断

Q1 Decision Sciences
Sakib A. Mondal, Prashanth Rv, Sagar Rao, Arun Menon
{"title":"梯子:基于日志的企业系统异常检测和诊断","authors":"Sakib A. Mondal,&nbsp;Prashanth Rv,&nbsp;Sagar Rao,&nbsp;Arun Menon","doi":"10.1007/s40745-023-00471-7","DOIUrl":null,"url":null,"abstract":"<div><p>Enterprise software can fail due to not only malfunction of application servers, but also due to performance degradation or non-availability of other servers or middle layers. Consequently, valuable time and resources are wasted in trying to identify the root cause of software failures. To address this, we have developed a framework called LADDERS. In LADDERS, anomalous incidents are detected from log events generated by various systems and KPIs (Key Performance Indicators) through an ensemble of supervised and unsupervised models. Without transaction identifiers, it is not possible to relate various events from different systems. LADDERS implements Recursive Parallel Causal Discovery (RPCD) to establish causal relationships among log events. The framework builds coresets using BICO to manage high volumes of log data during training and inferencing. An anomaly can cause a number of anomalies throughout the systems. LADDERS makes use of RPCD again to discover causal relationships among these anomalous events. Probable root causes are revealed from the causal graph and anomaly rating of events using a k-shortest path algorithm. We evaluated LADDERS using live logs from an enterprise system. The results demonstrate its effectiveness and efficiency for anomaly detection.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LADDERS: Log Based Anomaly Detection and Diagnosis for Enterprise Systems\",\"authors\":\"Sakib A. Mondal,&nbsp;Prashanth Rv,&nbsp;Sagar Rao,&nbsp;Arun Menon\",\"doi\":\"10.1007/s40745-023-00471-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enterprise software can fail due to not only malfunction of application servers, but also due to performance degradation or non-availability of other servers or middle layers. Consequently, valuable time and resources are wasted in trying to identify the root cause of software failures. To address this, we have developed a framework called LADDERS. In LADDERS, anomalous incidents are detected from log events generated by various systems and KPIs (Key Performance Indicators) through an ensemble of supervised and unsupervised models. Without transaction identifiers, it is not possible to relate various events from different systems. LADDERS implements Recursive Parallel Causal Discovery (RPCD) to establish causal relationships among log events. The framework builds coresets using BICO to manage high volumes of log data during training and inferencing. An anomaly can cause a number of anomalies throughout the systems. LADDERS makes use of RPCD again to discover causal relationships among these anomalous events. Probable root causes are revealed from the causal graph and anomaly rating of events using a k-shortest path algorithm. We evaluated LADDERS using live logs from an enterprise system. The results demonstrate its effectiveness and efficiency for anomaly detection.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-023-00471-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00471-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

企业软件出现故障的原因不仅包括应用服务器的故障,还包括其他服务器或中间层的性能下降或不可用。因此,宝贵的时间和资源都浪费在了试图找出软件故障的根本原因上。为了解决这个问题,我们开发了一个名为 LADDERS 的框架。在 LADDERS 中,我们通过一组监督和非监督模型,从各种系统和 KPI(关键性能指标)生成的日志事件中检测异常事件。如果没有事务标识符,就无法将来自不同系统的各种事件联系起来。LADDERS 实现了递归并行因果发现(RPCD),以建立日志事件之间的因果关系。该框架使用 BICO 构建核心集,以便在训练和推断过程中管理大量日志数据。一个异常可能会导致整个系统出现一系列异常。LADDERS 再次利用 RPCD 发现这些异常事件之间的因果关系。利用 k 最短路径算法,从因果图和异常事件评级中揭示出可能的根本原因。我们使用企业系统的实时日志对 LADDERS 进行了评估。结果证明了它在异常检测方面的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LADDERS: Log Based Anomaly Detection and Diagnosis for Enterprise Systems

Enterprise software can fail due to not only malfunction of application servers, but also due to performance degradation or non-availability of other servers or middle layers. Consequently, valuable time and resources are wasted in trying to identify the root cause of software failures. To address this, we have developed a framework called LADDERS. In LADDERS, anomalous incidents are detected from log events generated by various systems and KPIs (Key Performance Indicators) through an ensemble of supervised and unsupervised models. Without transaction identifiers, it is not possible to relate various events from different systems. LADDERS implements Recursive Parallel Causal Discovery (RPCD) to establish causal relationships among log events. The framework builds coresets using BICO to manage high volumes of log data during training and inferencing. An anomaly can cause a number of anomalies throughout the systems. LADDERS makes use of RPCD again to discover causal relationships among these anomalous events. Probable root causes are revealed from the causal graph and anomaly rating of events using a k-shortest path algorithm. We evaluated LADDERS using live logs from an enterprise system. The results demonstrate its effectiveness and efficiency for anomaly detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信