通过伪自旋算子探测Mermin不等式的违反

Q2 Physics and Astronomy
Philipe De Fabritiis , Itzhak Roditi , Silvio P. Sorella
{"title":"通过伪自旋算子探测Mermin不等式的违反","authors":"Philipe De Fabritiis ,&nbsp;Itzhak Roditi ,&nbsp;Silvio P. Sorella","doi":"10.1016/j.physo.2023.100177","DOIUrl":null,"url":null,"abstract":"<div><p>The violation of Mermin’s inequalities is analyzed by making use of two different Bell setups built with pseudospin operators. Employing entangled states defined by means of squeezed and coherent states, the expectation value of Mermin’s polynomials <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is evaluated for <span><math><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>=</mo><mn>4</mn></mrow></math></span>. In each case, we analyze the correlator <span><math><mrow><mo>〈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〉</mo></mrow></math></span> and identify the set of parameters leading to the violation of Mermin’s inequalities and to the saturation of the bound predicted by Quantum Mechanics.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"17 ","pages":"Article 100177"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing Mermin’s inequalities violations through pseudospin operators\",\"authors\":\"Philipe De Fabritiis ,&nbsp;Itzhak Roditi ,&nbsp;Silvio P. Sorella\",\"doi\":\"10.1016/j.physo.2023.100177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The violation of Mermin’s inequalities is analyzed by making use of two different Bell setups built with pseudospin operators. Employing entangled states defined by means of squeezed and coherent states, the expectation value of Mermin’s polynomials <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is evaluated for <span><math><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>=</mo><mn>4</mn></mrow></math></span>. In each case, we analyze the correlator <span><math><mrow><mo>〈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>〉</mo></mrow></math></span> and identify the set of parameters leading to the violation of Mermin’s inequalities and to the saturation of the bound predicted by Quantum Mechanics.</p></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"17 \",\"pages\":\"Article 100177\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266603262300042X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266603262300042X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

利用用伪自旋算子建立的两种不同的贝尔设置,分析了Mermin不等式的违反。利用压缩态和相干态定义的纠缠态,求出n=3和n=4时Mermin多项式Mn的期望值。在每种情况下,我们分析了相关器< Mn >,并确定了导致违反Mermin不等式和量子力学预测的边界饱和的参数集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probing Mermin’s inequalities violations through pseudospin operators

The violation of Mermin’s inequalities is analyzed by making use of two different Bell setups built with pseudospin operators. Employing entangled states defined by means of squeezed and coherent states, the expectation value of Mermin’s polynomials Mn is evaluated for n=3 and n=4. In each case, we analyze the correlator Mn and identify the set of parameters leading to the violation of Mermin’s inequalities and to the saturation of the bound predicted by Quantum Mechanics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信