具有无界阻尼系数的波动方程的均匀能量衰减

Pub Date : 2017-06-13 DOI:10.1619/fesi.63.133
R. Ikehata, H. Takeda
{"title":"具有无界阻尼系数的波动方程的均匀能量衰减","authors":"R. Ikehata, H. Takeda","doi":"10.1619/fesi.63.133","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem for wave equations with unbounded damping coefficients in the whole space. For a general class of unbounded damping coefficients, we derive uniform total energy decay estimates together with a unique existence result of a weak solution. In this case we never impose strong assumptions such as compactness of the support of the initial data. This means that we never rely on the finite propagation speed property of the solution, and we try to deal with an essential unbounded coefficient case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Uniform Energy Decay for Wave Equations with Unbounded Damping Coefficients\",\"authors\":\"R. Ikehata, H. Takeda\",\"doi\":\"10.1619/fesi.63.133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cauchy problem for wave equations with unbounded damping coefficients in the whole space. For a general class of unbounded damping coefficients, we derive uniform total energy decay estimates together with a unique existence result of a weak solution. In this case we never impose strong assumptions such as compactness of the support of the initial data. This means that we never rely on the finite propagation speed property of the solution, and we try to deal with an essential unbounded coefficient case.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/fesi.63.133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.63.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

考虑整个空间中阻尼系数无界的波动方程的柯西问题。对于一类一般的无界阻尼系数,我们得到了一致的总能量衰减估计和弱解的唯一存在性结果。在这种情况下,我们从不强加强假设,如初始数据支持的紧密性。这意味着我们从不依赖于解的有限传播速度性质,我们试图处理一个基本的无界系数情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Uniform Energy Decay for Wave Equations with Unbounded Damping Coefficients
We consider the Cauchy problem for wave equations with unbounded damping coefficients in the whole space. For a general class of unbounded damping coefficients, we derive uniform total energy decay estimates together with a unique existence result of a weak solution. In this case we never impose strong assumptions such as compactness of the support of the initial data. This means that we never rely on the finite propagation speed property of the solution, and we try to deal with an essential unbounded coefficient case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信