N-Peskin问题的Lipschitz类的整体存在性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
F. Gancedo, Rafael Granero-Belinch'on, S. Scrobogna
{"title":"N-Peskin问题的Lipschitz类的整体存在性","authors":"F. Gancedo, Rafael Granero-Belinch'on, S. Scrobogna","doi":"10.1512/iumj.2023.72.9320","DOIUrl":null,"url":null,"abstract":"In this paper we study the Peskin problem. This is a fluid-structure interaction problem that describes the motion of an elastic rod immersed in an incompressible Stokes fluid. We prove global in time existence of solution for initial data in the critical Lipschitz space. To obtain this result we use a new contour dynamic formulation which reduces the system to a scalar equation. Using a new decomposition together with cancellation properties, pointwise methods allow us to obtain the desired estimates in the Lipschitz class. Moreover, we perform energy estimates in order to obtain that the solution lies in the space $L^2 \\left( [0,T];H^{3/2} \\right) $ to satisfy the contour equation pointwise.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Global existence in the Lipschitz class for the N-Peskin problem\",\"authors\":\"F. Gancedo, Rafael Granero-Belinch'on, S. Scrobogna\",\"doi\":\"10.1512/iumj.2023.72.9320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the Peskin problem. This is a fluid-structure interaction problem that describes the motion of an elastic rod immersed in an incompressible Stokes fluid. We prove global in time existence of solution for initial data in the critical Lipschitz space. To obtain this result we use a new contour dynamic formulation which reduces the system to a scalar equation. Using a new decomposition together with cancellation properties, pointwise methods allow us to obtain the desired estimates in the Lipschitz class. Moreover, we perform energy estimates in order to obtain that the solution lies in the space $L^2 \\\\left( [0,T];H^{3/2} \\\\right) $ to satisfy the contour equation pointwise.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9320\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9320","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了Peskin问题。这是一个流体-结构相互作用问题,描述了浸入不可压缩斯托克斯流体中的弹性杆的运动。我们证明了临界Lipschitz空间中初始数据解的全局时间存在性。为了获得这一结果,我们使用了一种新的轮廓动力学公式,该公式将系统简化为标量方程。通过使用新的分解和抵消特性,逐点方法使我们能够在Lipschitz类中获得所需的估计。此外,我们进行能量估计,以获得解位于空间$L^2\left([0,T];H^{3/2}\right)$中,从而逐点满足轮廓方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence in the Lipschitz class for the N-Peskin problem
In this paper we study the Peskin problem. This is a fluid-structure interaction problem that describes the motion of an elastic rod immersed in an incompressible Stokes fluid. We prove global in time existence of solution for initial data in the critical Lipschitz space. To obtain this result we use a new contour dynamic formulation which reduces the system to a scalar equation. Using a new decomposition together with cancellation properties, pointwise methods allow us to obtain the desired estimates in the Lipschitz class. Moreover, we perform energy estimates in order to obtain that the solution lies in the space $L^2 \left( [0,T];H^{3/2} \right) $ to satisfy the contour equation pointwise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信