1050级铝板原型上等离子体氧化涂层的研究

Q3 Engineering
D. L. Medvedev
{"title":"1050级铝板原型上等离子体氧化涂层的研究","authors":"D. L. Medvedev","doi":"10.24000/0409-2961-2023-4-7-13","DOIUrl":null,"url":null,"abstract":"Today, the technology of hardening the surface layers of parts and the creation of protective coatings on the surface with high physical, mechanical and chemical properties are especially efficient in many industries. The article presents the studies of the most promising innovative technology for surface hardening of 1050 grade aluminum plates by plasma electrolytic oxidation method. This method allows to obtain the materials with an ultra-high melting point, high hardness, and wear resistance. Possible conditions and mechanisms for the formation of protective layers on the surface of aluminum plates to improve reliability and safety in the production of chemical industry products are considered. The influence was studied concerning the main technological parameters (alloying elements, electrical parameters, electrolyte composition) on the properties and structure of oxide ceramic coatings. The qualitative characteristics of the finished products from aluminum alloys and the surface layer of the samples showed the efficiency of the plasma electrolytic oxidation technology, which allows to obtain ceramic coatings with increased hardness, wear and corrosion resistance, and strength. When processing by plasma electrolytic oxidation in an aqueous electrolyte solution, all the industrial safety requirements are met. An alternative approach to processing by plasma electrolytic oxidation is considered, in which 1050 grade aluminum plates were used in a molten nitrate salt at a temperature of 280 °C. The microstructure, phase, chemical composition, and microhardness were studied by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and microhardness tests. The formed coating was found to be free from electrolyte contamination, cracks and pinholes commonly found in coatings formed during plasma electrolytic oxidation treatment in an aqueous electrolyte solution.","PeriodicalId":35650,"journal":{"name":"Bezopasnost'' Truda v Promyshlennosti","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Plasma Electric Oxide Coating Formed on the Prototype Samples of Aluminum Plates Made of 1050 Grade\",\"authors\":\"D. L. Medvedev\",\"doi\":\"10.24000/0409-2961-2023-4-7-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, the technology of hardening the surface layers of parts and the creation of protective coatings on the surface with high physical, mechanical and chemical properties are especially efficient in many industries. The article presents the studies of the most promising innovative technology for surface hardening of 1050 grade aluminum plates by plasma electrolytic oxidation method. This method allows to obtain the materials with an ultra-high melting point, high hardness, and wear resistance. Possible conditions and mechanisms for the formation of protective layers on the surface of aluminum plates to improve reliability and safety in the production of chemical industry products are considered. The influence was studied concerning the main technological parameters (alloying elements, electrical parameters, electrolyte composition) on the properties and structure of oxide ceramic coatings. The qualitative characteristics of the finished products from aluminum alloys and the surface layer of the samples showed the efficiency of the plasma electrolytic oxidation technology, which allows to obtain ceramic coatings with increased hardness, wear and corrosion resistance, and strength. When processing by plasma electrolytic oxidation in an aqueous electrolyte solution, all the industrial safety requirements are met. An alternative approach to processing by plasma electrolytic oxidation is considered, in which 1050 grade aluminum plates were used in a molten nitrate salt at a temperature of 280 °C. The microstructure, phase, chemical composition, and microhardness were studied by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and microhardness tests. The formed coating was found to be free from electrolyte contamination, cracks and pinholes commonly found in coatings formed during plasma electrolytic oxidation treatment in an aqueous electrolyte solution.\",\"PeriodicalId\":35650,\"journal\":{\"name\":\"Bezopasnost'' Truda v Promyshlennosti\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bezopasnost'' Truda v Promyshlennosti\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24000/0409-2961-2023-4-7-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bezopasnost'' Truda v Promyshlennosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24000/0409-2961-2023-4-7-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

如今,硬化零件表面层的技术以及在表面形成具有高物理、机械和化学性能的保护涂层在许多行业中尤其有效。本文介绍了利用等离子体电解氧化法对1050级铝板进行表面硬化的最有前途的创新技术的研究。这种方法可以获得具有超高熔点、高硬度和耐磨性的材料。考虑了在化工产品生产中在铝板表面形成保护层以提高可靠性和安全性的可能条件和机制。研究了主要工艺参数(合金元素、电参数、电解质组成)对氧化物陶瓷涂层性能和结构的影响。铝合金成品和样品表面层的定性特征表明了等离子体电解氧化技术的有效性,该技术可以获得硬度、耐磨性、耐腐蚀性和强度都提高的陶瓷涂层。在电解质水溶液中通过等离子体电解氧化进行加工时,满足所有工业安全要求。考虑了等离子体电解氧化处理的另一种方法,其中1050级铝板在280°C的熔融硝酸盐中使用。通过X射线衍射、扫描电子显微镜、能量色散X射线光谱和显微硬度测试对其微观结构、相、化学成分和显微硬度进行了研究。发现所形成的涂层没有电解质污染、裂纹和针孔,这些通常在电解质水溶液中的等离子体电解氧化处理期间形成的涂层中发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Plasma Electric Oxide Coating Formed on the Prototype Samples of Aluminum Plates Made of 1050 Grade
Today, the technology of hardening the surface layers of parts and the creation of protective coatings on the surface with high physical, mechanical and chemical properties are especially efficient in many industries. The article presents the studies of the most promising innovative technology for surface hardening of 1050 grade aluminum plates by plasma electrolytic oxidation method. This method allows to obtain the materials with an ultra-high melting point, high hardness, and wear resistance. Possible conditions and mechanisms for the formation of protective layers on the surface of aluminum plates to improve reliability and safety in the production of chemical industry products are considered. The influence was studied concerning the main technological parameters (alloying elements, electrical parameters, electrolyte composition) on the properties and structure of oxide ceramic coatings. The qualitative characteristics of the finished products from aluminum alloys and the surface layer of the samples showed the efficiency of the plasma electrolytic oxidation technology, which allows to obtain ceramic coatings with increased hardness, wear and corrosion resistance, and strength. When processing by plasma electrolytic oxidation in an aqueous electrolyte solution, all the industrial safety requirements are met. An alternative approach to processing by plasma electrolytic oxidation is considered, in which 1050 grade aluminum plates were used in a molten nitrate salt at a temperature of 280 °C. The microstructure, phase, chemical composition, and microhardness were studied by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and microhardness tests. The formed coating was found to be free from electrolyte contamination, cracks and pinholes commonly found in coatings formed during plasma electrolytic oxidation treatment in an aqueous electrolyte solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bezopasnost'' Truda v Promyshlennosti
Bezopasnost'' Truda v Promyshlennosti Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信