Burch及其相关子模的(共)同调的消失

IF 0.6 Q3 MATHEMATICS
Souvik Dey, Toshinori Kobayashi
{"title":"Burch及其相关子模的(共)同调的消失","authors":"Souvik Dey, Toshinori Kobayashi","doi":"10.1215/00192082-10429128","DOIUrl":null,"url":null,"abstract":"We introduce the notion of Burch submodules and weakly $\\mathfrak m$-full submodules of modules over local rings and study their properties. One of our main results shows that Burch submodules satisfy 2-Tor rigid and test property. We also show that over a local ring $(R,\\mathfrak m)$ a submodule $M$ of a finitely generated $R$-module $X$, such that either $M=\\mathfrak m X$ or $M(\\subseteq \\mathfrak m X$) is weakly $\\mathfrak m$-full in $X$, is 1-Tor rigid and a test module provided that $X$ is faithful (and $X/M$ has finite length when $M$ is weakly $\\mathfrak m$-full). As an application, we give a new class of rings such that a conjecture of Huneke and Wiegand is affirmative over them.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Vanishing of (co)homology of Burch and related submodules\",\"authors\":\"Souvik Dey, Toshinori Kobayashi\",\"doi\":\"10.1215/00192082-10429128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of Burch submodules and weakly $\\\\mathfrak m$-full submodules of modules over local rings and study their properties. One of our main results shows that Burch submodules satisfy 2-Tor rigid and test property. We also show that over a local ring $(R,\\\\mathfrak m)$ a submodule $M$ of a finitely generated $R$-module $X$, such that either $M=\\\\mathfrak m X$ or $M(\\\\subseteq \\\\mathfrak m X$) is weakly $\\\\mathfrak m$-full in $X$, is 1-Tor rigid and a test module provided that $X$ is faithful (and $X/M$ has finite length when $M$ is weakly $\\\\mathfrak m$-full). As an application, we give a new class of rings such that a conjecture of Huneke and Wiegand is affirmative over them.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-10429128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10429128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们引入了局部环上模的Burch子模和弱$\mathfrak-m$-全子模的概念,并研究了它们的性质。我们的一个主要结果表明,Burch子模满足2-Tor刚性和测试性质。我们还证明了在局部环$(R,\mathfrak m)$上,有限生成的$R$-模$X$的子模$m$,使得$m=\mathfrak-mX$或$m(\substeq\mathfrak-mX$)在$X$中是弱$\mathfrak-full的,是1-Tor刚性的,并且测试模假设$X$是忠实的(并且当$m$是弱$/mathfrak-full时$X/m$具有有限长度)。作为一个应用,我们给出了一类新的环,使得Huneke和Wiegand的猜想对它们是肯定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vanishing of (co)homology of Burch and related submodules
We introduce the notion of Burch submodules and weakly $\mathfrak m$-full submodules of modules over local rings and study their properties. One of our main results shows that Burch submodules satisfy 2-Tor rigid and test property. We also show that over a local ring $(R,\mathfrak m)$ a submodule $M$ of a finitely generated $R$-module $X$, such that either $M=\mathfrak m X$ or $M(\subseteq \mathfrak m X$) is weakly $\mathfrak m$-full in $X$, is 1-Tor rigid and a test module provided that $X$ is faithful (and $X/M$ has finite length when $M$ is weakly $\mathfrak m$-full). As an application, we give a new class of rings such that a conjecture of Huneke and Wiegand is affirmative over them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信