{"title":"神经元变异性建模中出现的奇摄动延迟抛物对流扩散方程的鲁棒计算方法","authors":"I. T. Daba, G. Duressa","doi":"10.22034/CMDE.2021.44306.1873","DOIUrl":null,"url":null,"abstract":"In this study, a robust computational method involving exponential cubic spline for solving singularly perturbed parabolic convection-diffusion equations arising in the modeling of neuronal variability has been presented. Some numerical examples are considered to validate the theoretical findings. The proposed scheme is shown to be an e-uniformly convergent accuracy of order O(Δt+h^2 ).","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Robust computational method for singularly perturbed delay parabolic convection-diffusion equations arising in the modeling of neuronal variability\",\"authors\":\"I. T. Daba, G. Duressa\",\"doi\":\"10.22034/CMDE.2021.44306.1873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a robust computational method involving exponential cubic spline for solving singularly perturbed parabolic convection-diffusion equations arising in the modeling of neuronal variability has been presented. Some numerical examples are considered to validate the theoretical findings. The proposed scheme is shown to be an e-uniformly convergent accuracy of order O(Δt+h^2 ).\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.44306.1873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.44306.1873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Robust computational method for singularly perturbed delay parabolic convection-diffusion equations arising in the modeling of neuronal variability
In this study, a robust computational method involving exponential cubic spline for solving singularly perturbed parabolic convection-diffusion equations arising in the modeling of neuronal variability has been presented. Some numerical examples are considered to validate the theoretical findings. The proposed scheme is shown to be an e-uniformly convergent accuracy of order O(Δt+h^2 ).