{"title":"科学案例与新一代多波束接收系统的概念设计","authors":"YANG Ji , HAN Wen-lei","doi":"10.1016/j.chinastron.2022.09.010","DOIUrl":null,"url":null,"abstract":"<div><p>Wide field, high sensitivity, high resolution, wide bandwidth, and polarization components are constantly pursued by CO molecular line surveys at millimeter wavelengths. Several key science cases that could be focused on by future large-scale molecular surveys have been identified upon the current progress of molecular surveys. A conceptual design for the new-generation multi-beam receiver system is proposed. Combined with the latest technical progress, the key technical solutions to realize the scheme are explained. The new design aims at a receiving scale of 100 beams. Following the newly developed hybrid planar integration technology, a new dual polarization receiving function is realized while inheriting the sideband separation mixing mode. On the basis of multi-line receiving configuration, each receiving sideband is expanded to 8 GHz. Judged from the existing technologies and the newest progress, this conceptual design scheme is fully achievable. Compared with the existing millimeter wave multi-beam receiving equipment, the comprehensive receiving capacity of the new generation millimeter wave multi-beam receiving system is estimated to increase by a factor of 89–178. This design is expected to bring another evolutionary progress for millimeter wave multi-beam receiving capability.</p></div>","PeriodicalId":35730,"journal":{"name":"Chinese Astronomy and Astrophysics","volume":"46 3","pages":"Pages 309-329"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Science Cases and the Conceptual Design for a New-generation Multi-beam Receiving System\",\"authors\":\"YANG Ji , HAN Wen-lei\",\"doi\":\"10.1016/j.chinastron.2022.09.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wide field, high sensitivity, high resolution, wide bandwidth, and polarization components are constantly pursued by CO molecular line surveys at millimeter wavelengths. Several key science cases that could be focused on by future large-scale molecular surveys have been identified upon the current progress of molecular surveys. A conceptual design for the new-generation multi-beam receiver system is proposed. Combined with the latest technical progress, the key technical solutions to realize the scheme are explained. The new design aims at a receiving scale of 100 beams. Following the newly developed hybrid planar integration technology, a new dual polarization receiving function is realized while inheriting the sideband separation mixing mode. On the basis of multi-line receiving configuration, each receiving sideband is expanded to 8 GHz. Judged from the existing technologies and the newest progress, this conceptual design scheme is fully achievable. Compared with the existing millimeter wave multi-beam receiving equipment, the comprehensive receiving capacity of the new generation millimeter wave multi-beam receiving system is estimated to increase by a factor of 89–178. This design is expected to bring another evolutionary progress for millimeter wave multi-beam receiving capability.</p></div>\",\"PeriodicalId\":35730,\"journal\":{\"name\":\"Chinese Astronomy and Astrophysics\",\"volume\":\"46 3\",\"pages\":\"Pages 309-329\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Astronomy and Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0275106222000674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0275106222000674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Science Cases and the Conceptual Design for a New-generation Multi-beam Receiving System
Wide field, high sensitivity, high resolution, wide bandwidth, and polarization components are constantly pursued by CO molecular line surveys at millimeter wavelengths. Several key science cases that could be focused on by future large-scale molecular surveys have been identified upon the current progress of molecular surveys. A conceptual design for the new-generation multi-beam receiver system is proposed. Combined with the latest technical progress, the key technical solutions to realize the scheme are explained. The new design aims at a receiving scale of 100 beams. Following the newly developed hybrid planar integration technology, a new dual polarization receiving function is realized while inheriting the sideband separation mixing mode. On the basis of multi-line receiving configuration, each receiving sideband is expanded to 8 GHz. Judged from the existing technologies and the newest progress, this conceptual design scheme is fully achievable. Compared with the existing millimeter wave multi-beam receiving equipment, the comprehensive receiving capacity of the new generation millimeter wave multi-beam receiving system is estimated to increase by a factor of 89–178. This design is expected to bring another evolutionary progress for millimeter wave multi-beam receiving capability.
期刊介绍:
The vigorous growth of astronomical and astrophysical science in China led to an increase in papers on astrophysics which Acta Astronomica Sinica could no longer absorb. Translations of papers from two new journals the Chinese Journal of Space Science and Acta Astrophysica Sinica are added to the translation of Acta Astronomica Sinica to form the new journal Chinese Astronomy and Astrophysics. Chinese Astronomy and Astrophysics brings English translations of notable articles to astronomers and astrophysicists outside China.