{"title":"微分内含物的位置脉冲控制近似","authors":"I. Finogenko, A. Sesekin","doi":"10.15826/umj.2022.1.005","DOIUrl":null,"url":null,"abstract":"Nonlinear control systems presented as differential inclusions with positional impulse controls are investigated. By such a control we mean some abstract operator with the Dirac function concentrated at each time. Such a control (\"running impulse\"), as a generalized function, has no meaning and is formalized as a sequence of correcting impulse actions on the system corresponding to a directed set of partitions of the control interval. The system responds to such control by discontinuous trajectories, which form a network of so-called \"Euler's broken lines.\" If, as a result of each such correction, the phase point of the object under study is on some given manifold (hypersurface), then a slip-type effect is introduced into the motion of the system, and then the network of \"Euler's broken lines\" is called an impulse-sliding mode. The paper deals with the problem of approximating impulse-sliding modes using sequences of continuous delta-like functions. The research is based on Yosida's approximation of set-valued mappings and some well-known facts for ordinary differential equations with impulses.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APPROXIMATION OF POSITIONAL IMPULSE CONTROLS FOR DIFFERENTIAL INCLUSIONS\",\"authors\":\"I. Finogenko, A. Sesekin\",\"doi\":\"10.15826/umj.2022.1.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear control systems presented as differential inclusions with positional impulse controls are investigated. By such a control we mean some abstract operator with the Dirac function concentrated at each time. Such a control (\\\"running impulse\\\"), as a generalized function, has no meaning and is formalized as a sequence of correcting impulse actions on the system corresponding to a directed set of partitions of the control interval. The system responds to such control by discontinuous trajectories, which form a network of so-called \\\"Euler's broken lines.\\\" If, as a result of each such correction, the phase point of the object under study is on some given manifold (hypersurface), then a slip-type effect is introduced into the motion of the system, and then the network of \\\"Euler's broken lines\\\" is called an impulse-sliding mode. The paper deals with the problem of approximating impulse-sliding modes using sequences of continuous delta-like functions. The research is based on Yosida's approximation of set-valued mappings and some well-known facts for ordinary differential equations with impulses.\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/umj.2022.1.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2022.1.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
APPROXIMATION OF POSITIONAL IMPULSE CONTROLS FOR DIFFERENTIAL INCLUSIONS
Nonlinear control systems presented as differential inclusions with positional impulse controls are investigated. By such a control we mean some abstract operator with the Dirac function concentrated at each time. Such a control ("running impulse"), as a generalized function, has no meaning and is formalized as a sequence of correcting impulse actions on the system corresponding to a directed set of partitions of the control interval. The system responds to such control by discontinuous trajectories, which form a network of so-called "Euler's broken lines." If, as a result of each such correction, the phase point of the object under study is on some given manifold (hypersurface), then a slip-type effect is introduced into the motion of the system, and then the network of "Euler's broken lines" is called an impulse-sliding mode. The paper deals with the problem of approximating impulse-sliding modes using sequences of continuous delta-like functions. The research is based on Yosida's approximation of set-valued mappings and some well-known facts for ordinary differential equations with impulses.