一类具有临界Hardy-Sobolev-Maz 'ya项和凹凸非线性的椭圆方程的两个不相交无穷解集

Q4 Mathematics
R. Echarghaoui, Zakaria Zaimi
{"title":"一类具有临界Hardy-Sobolev-Maz 'ya项和凹凸非线性的椭圆方程的两个不相交无穷解集","authors":"R. Echarghaoui, Zakaria Zaimi","doi":"10.2478/tmmp-2023-0003","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider the following critical Hardy-Sobolev-Maz’ya problem {−Δu=|u|2∗(t)−2u|y|t+μ|u|q−2u in Ω,u=0 on ∂Ω, \\begin{cases}-\\Delta u=\\frac{|u|^{2^*(t)-2} u}{|y|^t}+\\mu|u|^{q-2} u & \\text { in } \\Omega, \\\\ u=0 & \\text { on } \\partial \\Omega,\\end{cases} where Ω is an open bounded domain in ℝN , which contains some points (0,z*), μ>0,10,1<q<2,2^*(t)=\\frac{2(N-t)}{N-2}, 0 ≤ t < 2, x = (y, z) ∈ ℝk × ℝN−k, 2 ≤ k ≤ N. We prove that if N>2q+1q−1+t$N > 2{{q + 1} \\over {q - 1}} + t$, then the above problem has two disjoint and infinite sets of solutions. Here, we give a positive answer to one open problem proposed by Ambrosetti, Brezis and Cerami in [1] for the case of the critical Hardy-Sobolev-Maz’ya problem.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"83 1","pages":"25 - 42"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Disjoint and Infinite Sets of Solutions for An Elliptic Equation with Critical Hardy-Sobolev-Maz’ya Term and Concave-Convex Nonlinearities\",\"authors\":\"R. Echarghaoui, Zakaria Zaimi\",\"doi\":\"10.2478/tmmp-2023-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we consider the following critical Hardy-Sobolev-Maz’ya problem {−Δu=|u|2∗(t)−2u|y|t+μ|u|q−2u in Ω,u=0 on ∂Ω, \\\\begin{cases}-\\\\Delta u=\\\\frac{|u|^{2^*(t)-2} u}{|y|^t}+\\\\mu|u|^{q-2} u & \\\\text { in } \\\\Omega, \\\\\\\\ u=0 & \\\\text { on } \\\\partial \\\\Omega,\\\\end{cases} where Ω is an open bounded domain in ℝN , which contains some points (0,z*), μ>0,10,1<q<2,2^*(t)=\\\\frac{2(N-t)}{N-2}, 0 ≤ t < 2, x = (y, z) ∈ ℝk × ℝN−k, 2 ≤ k ≤ N. We prove that if N>2q+1q−1+t$N > 2{{q + 1} \\\\over {q - 1}} + t$, then the above problem has two disjoint and infinite sets of solutions. Here, we give a positive answer to one open problem proposed by Ambrosetti, Brezis and Cerami in [1] for the case of the critical Hardy-Sobolev-Maz’ya problem.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"83 1\",\"pages\":\"25 - 42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/tmmp-2023-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2023-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

文摘中,我们考虑以下关键Hardy-Sobolev-Maz大家问题{−Δu = | | 2∗(t)−2 u y | | t +μ| | q−2 uΩ,在∂u = 0Ω,开始\{病例}-δu = \ \压裂{| u | ^ {2 ^ * (t) 2} u} {y | | ^ t} + \ uμ| | ^ {q2} u & \文本的{}\ω\ \ u = 0 & \文本上{}\部分\ω,结束\{病例}Ω是一个开放的有限域在ℝN,其中包含一些点(0,z *),μ> 0,10,12 + 1 q−1 + t $ N > 2 {{q + 1} \ / {q - 1}} +新台币,然后上面的问题有两个不相交的无限集的解决方案。对于临界Hardy-Sobolev-Maz 'ya问题,我们给出了Ambrosetti、Brezis和Cerami在1996年提出的一个开放问题的肯定答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Disjoint and Infinite Sets of Solutions for An Elliptic Equation with Critical Hardy-Sobolev-Maz’ya Term and Concave-Convex Nonlinearities
Abstract In this paper, we consider the following critical Hardy-Sobolev-Maz’ya problem {−Δu=|u|2∗(t)−2u|y|t+μ|u|q−2u in Ω,u=0 on ∂Ω, \begin{cases}-\Delta u=\frac{|u|^{2^*(t)-2} u}{|y|^t}+\mu|u|^{q-2} u & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases} where Ω is an open bounded domain in ℝN , which contains some points (0,z*), μ>0,10,12q+1q−1+t$N > 2{{q + 1} \over {q - 1}} + t$, then the above problem has two disjoint and infinite sets of solutions. Here, we give a positive answer to one open problem proposed by Ambrosetti, Brezis and Cerami in [1] for the case of the critical Hardy-Sobolev-Maz’ya problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信