{"title":"在标准耗散框架中制定的连续烧结模型的数值方面","authors":"S. Stark","doi":"10.3390/mca28030069","DOIUrl":null,"url":null,"abstract":"Robust and computationally efficient numeric algorithms are required to simulate the sintering process of complex ceramic components by means of the finite element method. This work focuses on a thermodynamically consistent sintering model capturing the effects of both, viscosity and elasticity, within the standard dissipative framework. In particular, the temporal integration of the model by means of several implicit first and second order accurate one step time integration methods is discussed. It is shown in terms of numerical experiments on the material point level that the first order schemes exhibit poor performance when compared to second order schemes. Further numerical experiments indicate that the results translate directly to finite element simulations.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Aspects of a Continuum Sintering Model Formulated in the Standard Dissipative Framework\",\"authors\":\"S. Stark\",\"doi\":\"10.3390/mca28030069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust and computationally efficient numeric algorithms are required to simulate the sintering process of complex ceramic components by means of the finite element method. This work focuses on a thermodynamically consistent sintering model capturing the effects of both, viscosity and elasticity, within the standard dissipative framework. In particular, the temporal integration of the model by means of several implicit first and second order accurate one step time integration methods is discussed. It is shown in terms of numerical experiments on the material point level that the first order schemes exhibit poor performance when compared to second order schemes. Further numerical experiments indicate that the results translate directly to finite element simulations.\",\"PeriodicalId\":53224,\"journal\":{\"name\":\"Mathematical & Computational Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical & Computational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mca28030069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28030069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Numerical Aspects of a Continuum Sintering Model Formulated in the Standard Dissipative Framework
Robust and computationally efficient numeric algorithms are required to simulate the sintering process of complex ceramic components by means of the finite element method. This work focuses on a thermodynamically consistent sintering model capturing the effects of both, viscosity and elasticity, within the standard dissipative framework. In particular, the temporal integration of the model by means of several implicit first and second order accurate one step time integration methods is discussed. It is shown in terms of numerical experiments on the material point level that the first order schemes exhibit poor performance when compared to second order schemes. Further numerical experiments indicate that the results translate directly to finite element simulations.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.