空间流行病学数据的疾病地图

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
T. Kubota
{"title":"空间流行病学数据的疾病地图","authors":"T. Kubota","doi":"10.1002/wics.1604","DOIUrl":null,"url":null,"abstract":"Disease maps are essential when analyzing spatial epidemiological data, such as newly detected COVID‐19 positive cases or suicide deaths, because it is necessary to determine the method of analysis in order to perform spatial statistical analysis. Disease maps give an initial overview of the data and provide evidence of regional trends, which the analyst can check. Therefore, in this article, the author aimed to use R, a statistical data analysis tool, to draw spatial epidemiological data in the form of disease maps. This article presents three different methods and analyzes recent trends in COVID‐19 and suicide mortality. The author used monthly data from April, July, and October 2020. The results showed no significant trend in April, but some prefectures showed a negative correlation in July. On the other hand, some prefectures showed a positive correlation in October, confirming the influence of COVID‐19 on suicide by region.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diseases maps of spatial epidemiological data by R\",\"authors\":\"T. Kubota\",\"doi\":\"10.1002/wics.1604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disease maps are essential when analyzing spatial epidemiological data, such as newly detected COVID‐19 positive cases or suicide deaths, because it is necessary to determine the method of analysis in order to perform spatial statistical analysis. Disease maps give an initial overview of the data and provide evidence of regional trends, which the analyst can check. Therefore, in this article, the author aimed to use R, a statistical data analysis tool, to draw spatial epidemiological data in the form of disease maps. This article presents three different methods and analyzes recent trends in COVID‐19 and suicide mortality. The author used monthly data from April, July, and October 2020. The results showed no significant trend in April, but some prefectures showed a negative correlation in July. On the other hand, some prefectures showed a positive correlation in October, confirming the influence of COVID‐19 on suicide by region.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1604\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1604","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在分析空间流行病学数据(如新发现的COVID - 19阳性病例或自杀死亡)时,疾病地图至关重要,因为有必要确定分析方法,以便进行空间统计分析。疾病地图提供了数据的初步概述,并提供了分析人员可以检查的区域趋势的证据。因此,在本文中,作者旨在使用统计数据分析工具R,以疾病地图的形式绘制空间流行病学数据。本文提出了三种不同的方法,并分析了COVID - 19和自杀死亡率的最新趋势。作者使用了2020年4月、7月和10月的月度数据。结果显示,4月份没有明显的趋势,但部分地区在7月份出现负相关。另一方面,一些县在10月份表现出正相关,证实了COVID - 19对地区自杀的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diseases maps of spatial epidemiological data by R
Disease maps are essential when analyzing spatial epidemiological data, such as newly detected COVID‐19 positive cases or suicide deaths, because it is necessary to determine the method of analysis in order to perform spatial statistical analysis. Disease maps give an initial overview of the data and provide evidence of regional trends, which the analyst can check. Therefore, in this article, the author aimed to use R, a statistical data analysis tool, to draw spatial epidemiological data in the form of disease maps. This article presents three different methods and analyzes recent trends in COVID‐19 and suicide mortality. The author used monthly data from April, July, and October 2020. The results showed no significant trend in April, but some prefectures showed a negative correlation in July. On the other hand, some prefectures showed a positive correlation in October, confirming the influence of COVID‐19 on suicide by region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信