单调包含、变分不等式和不动点问题的一般迭代算法

Pub Date : 2021-05-01 DOI:10.4134/JKMS.J180808
J. Jung
{"title":"单调包含、变分不等式和不动点问题的一般迭代算法","authors":"J. Jung","doi":"10.4134/JKMS.J180808","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce two general iterative algorithms (one implicit algorithm and one explicit algorithm) for finding a common element of the solution set of the variational inequality problems for a continuous monotone mapping, the zero point set of a set-valued maximal monotone operator, and the fixed point set of a continuous pseudocontractive mapping in a Hilbert space. Then we establish strong convergence of the proposed iterative algorithms to a common point of three sets, which is a solution of a certain variational inequality. Further, we find the minimum-norm element in common set of three sets.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General iterative algorithms for monotone inclusion, variational inequality and fixed point problems\",\"authors\":\"J. Jung\",\"doi\":\"10.4134/JKMS.J180808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce two general iterative algorithms (one implicit algorithm and one explicit algorithm) for finding a common element of the solution set of the variational inequality problems for a continuous monotone mapping, the zero point set of a set-valued maximal monotone operator, and the fixed point set of a continuous pseudocontractive mapping in a Hilbert space. Then we establish strong convergence of the proposed iterative algorithms to a common point of three sets, which is a solution of a certain variational inequality. Further, we find the minimum-norm element in common set of three sets.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J180808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J180808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了两种寻找连续单调映射变分不等式问题解集公共元素的一般迭代算法(一种隐式算法和一种显式算法),集值极大单调算子的零点集和Hilbert空间中连续伪压缩映射的不动点集。然后,我们建立了所提出的迭代算法到三个集合的公共点的强收敛性,这是一个变分不等式的解。进一步,我们在三个集合的公共集合中找到了最小范数元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
General iterative algorithms for monotone inclusion, variational inequality and fixed point problems
In this paper, we introduce two general iterative algorithms (one implicit algorithm and one explicit algorithm) for finding a common element of the solution set of the variational inequality problems for a continuous monotone mapping, the zero point set of a set-valued maximal monotone operator, and the fixed point set of a continuous pseudocontractive mapping in a Hilbert space. Then we establish strong convergence of the proposed iterative algorithms to a common point of three sets, which is a solution of a certain variational inequality. Further, we find the minimum-norm element in common set of three sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信