{"title":"用广义Sobolev方程正则化Banach空间中的后抛物型方程","authors":"N. Duc, D. Hào, M. Shishlenin","doi":"10.1515/JIP-2012-0046","DOIUrl":null,"url":null,"abstract":"Abstract Let X be a Banach space with norm ∥ ⋅ ∥ {\\|\\cdot\\|} . Let A : D ( A ) ⊂ X → X {A:D(A)\\subset X\\rightarrow X} be an (possibly unbounded) operator that generates a uniformly bounded holomorphic semigroup. Suppose that ε > 0 {\\varepsilon>0} and T > 0 {T>0} are two given constants. The backward parabolic equation of finding a function u : [ 0 , T ] → X {u:[0,T]\\rightarrow X} satisfying u t + A u = 0 , 0 < t < T , ∥ u ( T ) - φ ∥ ⩽ ε , u_{t}+Au=0,\\quad 0<t<T,\\;\\|u(T)-\\varphi\\|\\leqslant\\varepsilon, for φ in X, is regularized by the generalized Sobolev equation u α t + A α u α = 0 , 0 < t < T , u α ( T ) = φ , u_{\\alpha t}+A_{\\alpha}u_{\\alpha}=0,\\quad 0<t<T,\\;u_{\\alpha}(T)=\\varphi, where 0 < α < 1 {0<\\alpha<1} and A α = A ( I + α A b ) - 1 {A_{\\alpha}=A(I+\\alpha A^{b})^{-1}} with b ⩾ 1 {b\\geqslant 1} . Error estimates of the method with respect to the noise level are proved.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/JIP-2012-0046","citationCount":"11","resultStr":"{\"title\":\"Regularization of backward parabolic equations in Banach spaces by generalized Sobolev equations\",\"authors\":\"N. Duc, D. Hào, M. Shishlenin\",\"doi\":\"10.1515/JIP-2012-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let X be a Banach space with norm ∥ ⋅ ∥ {\\\\|\\\\cdot\\\\|} . Let A : D ( A ) ⊂ X → X {A:D(A)\\\\subset X\\\\rightarrow X} be an (possibly unbounded) operator that generates a uniformly bounded holomorphic semigroup. Suppose that ε > 0 {\\\\varepsilon>0} and T > 0 {T>0} are two given constants. The backward parabolic equation of finding a function u : [ 0 , T ] → X {u:[0,T]\\\\rightarrow X} satisfying u t + A u = 0 , 0 < t < T , ∥ u ( T ) - φ ∥ ⩽ ε , u_{t}+Au=0,\\\\quad 0<t<T,\\\\;\\\\|u(T)-\\\\varphi\\\\|\\\\leqslant\\\\varepsilon, for φ in X, is regularized by the generalized Sobolev equation u α t + A α u α = 0 , 0 < t < T , u α ( T ) = φ , u_{\\\\alpha t}+A_{\\\\alpha}u_{\\\\alpha}=0,\\\\quad 0<t<T,\\\\;u_{\\\\alpha}(T)=\\\\varphi, where 0 < α < 1 {0<\\\\alpha<1} and A α = A ( I + α A b ) - 1 {A_{\\\\alpha}=A(I+\\\\alpha A^{b})^{-1}} with b ⩾ 1 {b\\\\geqslant 1} . Error estimates of the method with respect to the noise level are proved.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/JIP-2012-0046\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/JIP-2012-0046\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/JIP-2012-0046","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11
摘要
摘要设X为范数∥⋅∥{\| \cdot \|}的Banach空间{。设A:D≠(A)∧X→X A:D(A) \subset X \rightarrow X}是一个产生一致有界全纯半群的(可能无界的)算子。假设ε >{\varepsilon >}和T>{ T>}是两个给定的常数。求函数u的反抛物方程:[0,T]→X{ u:[0,T] \rightarrow X}满足u T +A²u= 0,0 本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularization of backward parabolic equations in Banach spaces by generalized Sobolev equations
Abstract Let X be a Banach space with norm ∥ ⋅ ∥ {\|\cdot\|} . Let A : D ( A ) ⊂ X → X {A:D(A)\subset X\rightarrow X} be an (possibly unbounded) operator that generates a uniformly bounded holomorphic semigroup. Suppose that ε > 0 {\varepsilon>0} and T > 0 {T>0} are two given constants. The backward parabolic equation of finding a function u : [ 0 , T ] → X {u:[0,T]\rightarrow X} satisfying u t + A u = 0 , 0 < t < T , ∥ u ( T ) - φ ∥ ⩽ ε , u_{t}+Au=0,\quad 0
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography