预期Jacobian类型的除数

Pub Date : 2020-04-18 DOI:10.7146/math.scand.a-126042
J. À. Montaner, F. Planas-Vilanova
{"title":"预期Jacobian类型的除数","authors":"J. À. Montaner, F. Planas-Vilanova","doi":"10.7146/math.scand.a-126042","DOIUrl":null,"url":null,"abstract":"Divisors whose Jacobian ideal is of linear type have received a lot of attention recently because of its connections with the theory of $D$-modules. In this work we are interested on divisors of expected Jacobian type, that is, divisors whose gradient ideal is of linear type and the relation type of its Jacobian ideal coincides with the reduction number with respect to the gradient ideal plus one. We provide conditions in order to be able to describe precisely the equations of the Rees algebra of the Jacobian ideal. We also relate the relation type of the Jacobian ideal to some $D$-module theoretic invariant given by the degree of the Kashiwara operator.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divisors of expected Jacobian type\",\"authors\":\"J. À. Montaner, F. Planas-Vilanova\",\"doi\":\"10.7146/math.scand.a-126042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Divisors whose Jacobian ideal is of linear type have received a lot of attention recently because of its connections with the theory of $D$-modules. In this work we are interested on divisors of expected Jacobian type, that is, divisors whose gradient ideal is of linear type and the relation type of its Jacobian ideal coincides with the reduction number with respect to the gradient ideal plus one. We provide conditions in order to be able to describe precisely the equations of the Rees algebra of the Jacobian ideal. We also relate the relation type of the Jacobian ideal to some $D$-module theoretic invariant given by the degree of the Kashiwara operator.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-126042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-126042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

雅可比理想为线性型的除数由于与D -模理论的联系,近年来受到了广泛的关注。在这项工作中,我们感兴趣的是期望雅可比型的除数,即梯度理想为线性型的除数,其雅可比理想的关系型与相对于梯度理想加1的约化数相一致。为了能够精确地描述雅可比理想的里斯代数方程,我们提供了一些条件。我们还将雅可比理想的关系类型与由Kashiwara算子的度给出的D -模理论不变量联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Divisors of expected Jacobian type
Divisors whose Jacobian ideal is of linear type have received a lot of attention recently because of its connections with the theory of $D$-modules. In this work we are interested on divisors of expected Jacobian type, that is, divisors whose gradient ideal is of linear type and the relation type of its Jacobian ideal coincides with the reduction number with respect to the gradient ideal plus one. We provide conditions in order to be able to describe precisely the equations of the Rees algebra of the Jacobian ideal. We also relate the relation type of the Jacobian ideal to some $D$-module theoretic invariant given by the degree of the Kashiwara operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信