Z. Zlatev, J. Ilieva, D. Orozova, G. Shivacheva, Nadezhda Angelova
{"title":"一种声转RGB智能声学器件的设计与研究","authors":"Z. Zlatev, J. Ilieva, D. Orozova, G. Shivacheva, Nadezhda Angelova","doi":"10.3390/mti7080079","DOIUrl":null,"url":null,"abstract":"This paper presents a device that converts sound wave frequencies into colors to assist people with hearing problems in solving accessibility and communication problems in the hearing-impaired community. The device uses a precise mathematical apparatus and carefully selected hardware to achieve accurate conversion of sound to color, supported by specialized automatic processing software suitable for standardization. Experimental evaluation shows excellent performance for frequencies below 1000 Hz, although limitations are encountered at higher frequencies, requiring further investigation into advanced noise filtering and hardware optimization. The device shows promise for various applications, including education, art, and therapy. The study acknowledges its limitations and suggests future research to generalize the models for converting sound frequencies to color and improving usability for a broader range of hearing impairments. Feedback from the hearing-impaired community will play a critical role in further developing the device for practical use. Overall, this innovative device for converting sound to color represents a significant step toward improving accessibility and communication for people with hearing challenges. Continued research offers the potential to overcome challenges and extend the benefits of the device to a variety of areas, ultimately improving the quality of life for people with hearing impairments.","PeriodicalId":52297,"journal":{"name":"Multimodal Technologies and Interaction","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Research of a Sound-to-RGB Smart Acoustic Device\",\"authors\":\"Z. Zlatev, J. Ilieva, D. Orozova, G. Shivacheva, Nadezhda Angelova\",\"doi\":\"10.3390/mti7080079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a device that converts sound wave frequencies into colors to assist people with hearing problems in solving accessibility and communication problems in the hearing-impaired community. The device uses a precise mathematical apparatus and carefully selected hardware to achieve accurate conversion of sound to color, supported by specialized automatic processing software suitable for standardization. Experimental evaluation shows excellent performance for frequencies below 1000 Hz, although limitations are encountered at higher frequencies, requiring further investigation into advanced noise filtering and hardware optimization. The device shows promise for various applications, including education, art, and therapy. The study acknowledges its limitations and suggests future research to generalize the models for converting sound frequencies to color and improving usability for a broader range of hearing impairments. Feedback from the hearing-impaired community will play a critical role in further developing the device for practical use. Overall, this innovative device for converting sound to color represents a significant step toward improving accessibility and communication for people with hearing challenges. Continued research offers the potential to overcome challenges and extend the benefits of the device to a variety of areas, ultimately improving the quality of life for people with hearing impairments.\",\"PeriodicalId\":52297,\"journal\":{\"name\":\"Multimodal Technologies and Interaction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimodal Technologies and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mti7080079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Technologies and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mti7080079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Design and Research of a Sound-to-RGB Smart Acoustic Device
This paper presents a device that converts sound wave frequencies into colors to assist people with hearing problems in solving accessibility and communication problems in the hearing-impaired community. The device uses a precise mathematical apparatus and carefully selected hardware to achieve accurate conversion of sound to color, supported by specialized automatic processing software suitable for standardization. Experimental evaluation shows excellent performance for frequencies below 1000 Hz, although limitations are encountered at higher frequencies, requiring further investigation into advanced noise filtering and hardware optimization. The device shows promise for various applications, including education, art, and therapy. The study acknowledges its limitations and suggests future research to generalize the models for converting sound frequencies to color and improving usability for a broader range of hearing impairments. Feedback from the hearing-impaired community will play a critical role in further developing the device for practical use. Overall, this innovative device for converting sound to color represents a significant step toward improving accessibility and communication for people with hearing challenges. Continued research offers the potential to overcome challenges and extend the benefits of the device to a variety of areas, ultimately improving the quality of life for people with hearing impairments.