C. French, D. Kurbegov, D. Spigel, M. Makowski, Samantha R. Terker, P. Clark
{"title":"使用自然语言处理和机器学习来识别和分类肺结节,自动化放射学报告中的偶然发现。","authors":"C. French, D. Kurbegov, D. Spigel, M. Makowski, Samantha R. Terker, P. Clark","doi":"10.1200/jgo.2019.5.suppl.49","DOIUrl":null,"url":null,"abstract":"49 Background: Pulmonary nodule incidental findings challenge providers to balance resource efficiency and high clinical quality. Incidental findings tend to be under evaluated with studies reporting appropriate follow-up rates as low as 29%. The efficient identification of patients with high risk nodules is foundational to ensuring appropriate follow-up and requires the clinical reading and classification of radiology reports. We tested the feasibility of automating this process with natural language processing (NLP) and machine learning (ML). Methods: In cooperation with Sarah Cannon, the Cancer Institute of HCA Healthcare, we conducted a series of experiments on 8,879 free-text, narrative CT radiology reports. A representative sample of health system ED, IP, and OP reports dated from Dec 2015 - April 2017 were divided into a development set for model training and validation, and a test set to evaluate model performance. A “Nodule Model” was trained to detect the reported presence of a pulmonary nodule and a rules-based “Size Model” was developed to extract the size of the nodule in mms. Reports were bucketed into three prediction groups: ≥ 6 mm, <6 mm, and no size indicated. Nodules were placed in a queue for follow-up if the nodule was predicted ≥ 6 mm, or if the nodule had no size indicated and the report contained the word “mass.” The Fleischner Society Guidelines and clinical review informed these definitions. Results: Precision and recall metrics were calculated for multiple model thresholds. A threshold was selected based on the validation set calculations and a success criterion of 90% queue precision was selected to minimize false positives. On the test dataset, the F1 measure of the entire pipeline was 72.9%, recall was 60.3%, and queue precision was 90.2%, exceeding success criteria. Conclusions: The experiments demonstrate the feasibility of technology to automate the detection and classification of pulmonary nodule incidental findings in radiology reports. This approach promises to improve healthcare quality by increasing the rate of appropriate lung nodule incidental finding follow-up and treatment without excessive labor or risking overutilization.","PeriodicalId":15862,"journal":{"name":"Journal of global oncology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automate incidental findings in radiology reports using natural language processing and machine learning to identify and classify lung nodules.\",\"authors\":\"C. French, D. Kurbegov, D. Spigel, M. Makowski, Samantha R. Terker, P. Clark\",\"doi\":\"10.1200/jgo.2019.5.suppl.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"49 Background: Pulmonary nodule incidental findings challenge providers to balance resource efficiency and high clinical quality. Incidental findings tend to be under evaluated with studies reporting appropriate follow-up rates as low as 29%. The efficient identification of patients with high risk nodules is foundational to ensuring appropriate follow-up and requires the clinical reading and classification of radiology reports. We tested the feasibility of automating this process with natural language processing (NLP) and machine learning (ML). Methods: In cooperation with Sarah Cannon, the Cancer Institute of HCA Healthcare, we conducted a series of experiments on 8,879 free-text, narrative CT radiology reports. A representative sample of health system ED, IP, and OP reports dated from Dec 2015 - April 2017 were divided into a development set for model training and validation, and a test set to evaluate model performance. A “Nodule Model” was trained to detect the reported presence of a pulmonary nodule and a rules-based “Size Model” was developed to extract the size of the nodule in mms. Reports were bucketed into three prediction groups: ≥ 6 mm, <6 mm, and no size indicated. Nodules were placed in a queue for follow-up if the nodule was predicted ≥ 6 mm, or if the nodule had no size indicated and the report contained the word “mass.” The Fleischner Society Guidelines and clinical review informed these definitions. Results: Precision and recall metrics were calculated for multiple model thresholds. A threshold was selected based on the validation set calculations and a success criterion of 90% queue precision was selected to minimize false positives. On the test dataset, the F1 measure of the entire pipeline was 72.9%, recall was 60.3%, and queue precision was 90.2%, exceeding success criteria. Conclusions: The experiments demonstrate the feasibility of technology to automate the detection and classification of pulmonary nodule incidental findings in radiology reports. This approach promises to improve healthcare quality by increasing the rate of appropriate lung nodule incidental finding follow-up and treatment without excessive labor or risking overutilization.\",\"PeriodicalId\":15862,\"journal\":{\"name\":\"Journal of global oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of global oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/jgo.2019.5.suppl.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of global oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/jgo.2019.5.suppl.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automate incidental findings in radiology reports using natural language processing and machine learning to identify and classify lung nodules.
49 Background: Pulmonary nodule incidental findings challenge providers to balance resource efficiency and high clinical quality. Incidental findings tend to be under evaluated with studies reporting appropriate follow-up rates as low as 29%. The efficient identification of patients with high risk nodules is foundational to ensuring appropriate follow-up and requires the clinical reading and classification of radiology reports. We tested the feasibility of automating this process with natural language processing (NLP) and machine learning (ML). Methods: In cooperation with Sarah Cannon, the Cancer Institute of HCA Healthcare, we conducted a series of experiments on 8,879 free-text, narrative CT radiology reports. A representative sample of health system ED, IP, and OP reports dated from Dec 2015 - April 2017 were divided into a development set for model training and validation, and a test set to evaluate model performance. A “Nodule Model” was trained to detect the reported presence of a pulmonary nodule and a rules-based “Size Model” was developed to extract the size of the nodule in mms. Reports were bucketed into three prediction groups: ≥ 6 mm, <6 mm, and no size indicated. Nodules were placed in a queue for follow-up if the nodule was predicted ≥ 6 mm, or if the nodule had no size indicated and the report contained the word “mass.” The Fleischner Society Guidelines and clinical review informed these definitions. Results: Precision and recall metrics were calculated for multiple model thresholds. A threshold was selected based on the validation set calculations and a success criterion of 90% queue precision was selected to minimize false positives. On the test dataset, the F1 measure of the entire pipeline was 72.9%, recall was 60.3%, and queue precision was 90.2%, exceeding success criteria. Conclusions: The experiments demonstrate the feasibility of technology to automate the detection and classification of pulmonary nodule incidental findings in radiology reports. This approach promises to improve healthcare quality by increasing the rate of appropriate lung nodule incidental finding follow-up and treatment without excessive labor or risking overutilization.
期刊介绍:
The Journal of Global Oncology (JGO) is an online only, open access journal focused on cancer care, research and care delivery issues unique to countries and settings with limited healthcare resources. JGO aims to provide a home for high-quality literature that fulfills a growing need for content describing the array of challenges health care professionals in resource-constrained settings face. Article types include original reports, review articles, commentaries, correspondence/replies, special articles and editorials.