Linex损失加采样代价下正态均值的序贯最小风险点估计方法:一阶和二阶渐近性

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
N. Mukhopadhyay, Soumik Banerjee
{"title":"Linex损失加采样代价下正态均值的序贯最小风险点估计方法:一阶和二阶渐近性","authors":"N. Mukhopadhyay, Soumik Banerjee","doi":"10.1080/07474946.2019.1686937","DOIUrl":null,"url":null,"abstract":"Abstract We have designed a sequential minimum risk point estimation (MRPE) strategy for the unknown mean of a normal population having its variance unknown too. This is developed under a Linex loss plus linear cost of sampling. A number of important asymptotic first-order and asymptotic second-order properties' characteristics have been developed and proved thoroughly. Extensive sets of simulations tend to validate nearly all of these asymptotic properties for small to medium to large optimal fixed sample sizes.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07474946.2019.1686937","citationCount":"3","resultStr":"{\"title\":\"Sequential minimum risk point estimation (MRPE) methodology for a normal mean under Linex loss plus sampling cost: First-order and second-order asymptotics\",\"authors\":\"N. Mukhopadhyay, Soumik Banerjee\",\"doi\":\"10.1080/07474946.2019.1686937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We have designed a sequential minimum risk point estimation (MRPE) strategy for the unknown mean of a normal population having its variance unknown too. This is developed under a Linex loss plus linear cost of sampling. A number of important asymptotic first-order and asymptotic second-order properties' characteristics have been developed and proved thoroughly. Extensive sets of simulations tend to validate nearly all of these asymptotic properties for small to medium to large optimal fixed sample sizes.\",\"PeriodicalId\":48879,\"journal\":{\"name\":\"Sequential Analysis-Design Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07474946.2019.1686937\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sequential Analysis-Design Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07474946.2019.1686937\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2019.1686937","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

摘要针对方差未知的正态群体的未知均值,我们设计了一种序列最小风险点估计(MRPE)策略。这是在Linex损耗加上线性采样成本的情况下开发的。已经发展并充分证明了许多重要的渐近一阶和渐近二阶性质的性质。大量的模拟往往会验证从小到中到大的最优固定样本量的几乎所有这些渐近性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential minimum risk point estimation (MRPE) methodology for a normal mean under Linex loss plus sampling cost: First-order and second-order asymptotics
Abstract We have designed a sequential minimum risk point estimation (MRPE) strategy for the unknown mean of a normal population having its variance unknown too. This is developed under a Linex loss plus linear cost of sampling. A number of important asymptotic first-order and asymptotic second-order properties' characteristics have been developed and proved thoroughly. Extensive sets of simulations tend to validate nearly all of these asymptotic properties for small to medium to large optimal fixed sample sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
20
期刊介绍: The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches. Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信