{"title":"具有小中心电荷的极值CFTs的性质","authors":"Francesca Ferrari, Sarah M. Harrison","doi":"10.4310/cntp.2020.v14.n3.a6","DOIUrl":null,"url":null,"abstract":"We analyze aspects of extant examples of 2d extremal chiral (super)conformal field theories with $c\\leq 24$. These are theories whose only operators with dimension smaller or equal to $c/24$ are the vacuum and its (super)Virasoro descendents. The prototypical example is the monster CFT, whose famous genus zero property is intimately tied to the Rademacher summability of its twined partition functions, a property which also distinguishes the functions of Mathieu and umbral moonshine. However, there are now several additional known examples of extremal CFTs, all of which have at least $\\mathcal N=1$ supersymmetry and global symmetry groups connected to sporadic simple groups. We investigate the extent to which such a property, which distinguishes the monster moonshine module from other $c=24$ chiral CFTs, holds for the other known extremal theories. We find that in most cases, the special Rademacher summability property present for monstrous and umbral moonshine does not hold for the other extremal CFTs, with the exception of the Conway module and two $c=12, ~\\mathcal N=4$ superconformal theories with $M_{11}$ and $M_{22}$ symmetry. This suggests that the connection between extremal CFT, sporadic groups, and mock modular forms transcends strict Rademacher summability criteria.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Properties of extremal CFTs with small central charge\",\"authors\":\"Francesca Ferrari, Sarah M. Harrison\",\"doi\":\"10.4310/cntp.2020.v14.n3.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze aspects of extant examples of 2d extremal chiral (super)conformal field theories with $c\\\\leq 24$. These are theories whose only operators with dimension smaller or equal to $c/24$ are the vacuum and its (super)Virasoro descendents. The prototypical example is the monster CFT, whose famous genus zero property is intimately tied to the Rademacher summability of its twined partition functions, a property which also distinguishes the functions of Mathieu and umbral moonshine. However, there are now several additional known examples of extremal CFTs, all of which have at least $\\\\mathcal N=1$ supersymmetry and global symmetry groups connected to sporadic simple groups. We investigate the extent to which such a property, which distinguishes the monster moonshine module from other $c=24$ chiral CFTs, holds for the other known extremal theories. We find that in most cases, the special Rademacher summability property present for monstrous and umbral moonshine does not hold for the other extremal CFTs, with the exception of the Conway module and two $c=12, ~\\\\mathcal N=4$ superconformal theories with $M_{11}$ and $M_{22}$ symmetry. This suggests that the connection between extremal CFT, sporadic groups, and mock modular forms transcends strict Rademacher summability criteria.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2020.v14.n3.a6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2020.v14.n3.a6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Properties of extremal CFTs with small central charge
We analyze aspects of extant examples of 2d extremal chiral (super)conformal field theories with $c\leq 24$. These are theories whose only operators with dimension smaller or equal to $c/24$ are the vacuum and its (super)Virasoro descendents. The prototypical example is the monster CFT, whose famous genus zero property is intimately tied to the Rademacher summability of its twined partition functions, a property which also distinguishes the functions of Mathieu and umbral moonshine. However, there are now several additional known examples of extremal CFTs, all of which have at least $\mathcal N=1$ supersymmetry and global symmetry groups connected to sporadic simple groups. We investigate the extent to which such a property, which distinguishes the monster moonshine module from other $c=24$ chiral CFTs, holds for the other known extremal theories. We find that in most cases, the special Rademacher summability property present for monstrous and umbral moonshine does not hold for the other extremal CFTs, with the exception of the Conway module and two $c=12, ~\mathcal N=4$ superconformal theories with $M_{11}$ and $M_{22}$ symmetry. This suggests that the connection between extremal CFT, sporadic groups, and mock modular forms transcends strict Rademacher summability criteria.
期刊介绍:
Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.