关于足够高阶多项式的Sendov猜想

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
T. Tao
{"title":"关于足够高阶多项式的Sendov猜想","authors":"T. Tao","doi":"10.4310/acta.2022.v229.n2.a3","DOIUrl":null,"url":null,"abstract":"\\emph{Sendov's conjecture} asserts that if a complex polynomial $f$ of degree $n \\geq 2$ has all of its zeroes in closed unit disk $\\{ z: |z| \\leq 1 \\}$, then for each such zero $\\lambda_0$ there is a zero of the derivative $f'$ in the closed unit disk $\\{ z: |z-\\lambda_0| \\leq 1 \\}$. This conjecture is known for $n < 9$, but only partial results are available for higher $n$. We show that there exists a constant $n_0$ such that Sendov's conjecture holds for $n \\geq n_0$. For $\\lambda_0$ away from the origin and the unit circle we can appeal to the prior work of Degot and Chalebgwa; for $\\lambda_0$ near the unit circle we refine a previous argument of Miller (and also invoke results of Chijiwa when $\\lambda_0$ is extremely close to the unit circle); and for $\\lambda_0$ near the origin we introduce a new argument using compactness methods, balayage, and the argument principle.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Sendov’s conjecture for sufficiently-high-degree polynomials\",\"authors\":\"T. Tao\",\"doi\":\"10.4310/acta.2022.v229.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\\emph{Sendov's conjecture} asserts that if a complex polynomial $f$ of degree $n \\\\geq 2$ has all of its zeroes in closed unit disk $\\\\{ z: |z| \\\\leq 1 \\\\}$, then for each such zero $\\\\lambda_0$ there is a zero of the derivative $f'$ in the closed unit disk $\\\\{ z: |z-\\\\lambda_0| \\\\leq 1 \\\\}$. This conjecture is known for $n < 9$, but only partial results are available for higher $n$. We show that there exists a constant $n_0$ such that Sendov's conjecture holds for $n \\\\geq n_0$. For $\\\\lambda_0$ away from the origin and the unit circle we can appeal to the prior work of Degot and Chalebgwa; for $\\\\lambda_0$ near the unit circle we refine a previous argument of Miller (and also invoke results of Chijiwa when $\\\\lambda_0$ is extremely close to the unit circle); and for $\\\\lambda_0$ near the origin we introduce a new argument using compactness methods, balayage, and the argument principle.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/acta.2022.v229.n2.a3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2022.v229.n2.a3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 12

摘要

\emph{Sendov猜想}断言,如果一个次为$n\geq2$的复多项式$f$在闭单位盘$\{z:|z|\leq1\}$中有其所有零,那么对于每个这样的零$\lambda_0$,在闭单位盘中$\{s z:|z-\lambda:0|\leq1\}$存在导数$f'$的零。这个猜想对于$n<9$是已知的,但对于更高的$n$只有部分结果可用。我们证明了存在一个常数$n_0$,使得Sendov猜想对$n\geqn_0$成立。对于远离原点和单位圆的$\lambda_0$,我们可以借鉴Degot和Chalebgwa之前的工作;对于单位圆附近的$\lambda_0$,我们改进了Miller的先前自变量(并且当$\lambda _0$非常接近单位圆时,也调用Chijiwa的结果);对于原点附近的$\lambda0$,我们使用紧致性方法、balayage和变元原理引入了一个新的变元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sendov’s conjecture for sufficiently-high-degree polynomials
\emph{Sendov's conjecture} asserts that if a complex polynomial $f$ of degree $n \geq 2$ has all of its zeroes in closed unit disk $\{ z: |z| \leq 1 \}$, then for each such zero $\lambda_0$ there is a zero of the derivative $f'$ in the closed unit disk $\{ z: |z-\lambda_0| \leq 1 \}$. This conjecture is known for $n < 9$, but only partial results are available for higher $n$. We show that there exists a constant $n_0$ such that Sendov's conjecture holds for $n \geq n_0$. For $\lambda_0$ away from the origin and the unit circle we can appeal to the prior work of Degot and Chalebgwa; for $\lambda_0$ near the unit circle we refine a previous argument of Miller (and also invoke results of Chijiwa when $\lambda_0$ is extremely close to the unit circle); and for $\lambda_0$ near the origin we introduce a new argument using compactness methods, balayage, and the argument principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信