基于l矩和辅助信息的方差估计

IF 1.4 3区 社会学 Q3 DEMOGRAPHY
U. Shahzad, I. Ahmad, I. Almanjahie, N. Koyuncu, M. Hanif
{"title":"基于l矩和辅助信息的方差估计","authors":"U. Shahzad, I. Ahmad, I. Almanjahie, N. Koyuncu, M. Hanif","doi":"10.1080/08898480.2021.1949923","DOIUrl":null,"url":null,"abstract":"ABSTRACT The presence of extreme values in a data set reduces the efficiency of variance estimators. L-moments are based on the ordered form of a random variable to estimate the variance of the population. The two variance estimators are used for calibration to a stratified random sampling design and relying on an auxiliary variable. The proposed estimators use the properties of L-moments, such as the L-mean, also called L-location, the L-standard deviation, also called L-scaling, and the L-coefficient of variation, which is a measure of variation. The use of these properties allows for providing better estimators. A simulation proves the better efficiency of these estimators.","PeriodicalId":49859,"journal":{"name":"Mathematical Population Studies","volume":"29 1","pages":"31 - 46"},"PeriodicalIF":1.4000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08898480.2021.1949923","citationCount":"3","resultStr":"{\"title\":\"Variance estimation based on L-moments and auxiliary information\",\"authors\":\"U. Shahzad, I. Ahmad, I. Almanjahie, N. Koyuncu, M. Hanif\",\"doi\":\"10.1080/08898480.2021.1949923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The presence of extreme values in a data set reduces the efficiency of variance estimators. L-moments are based on the ordered form of a random variable to estimate the variance of the population. The two variance estimators are used for calibration to a stratified random sampling design and relying on an auxiliary variable. The proposed estimators use the properties of L-moments, such as the L-mean, also called L-location, the L-standard deviation, also called L-scaling, and the L-coefficient of variation, which is a measure of variation. The use of these properties allows for providing better estimators. A simulation proves the better efficiency of these estimators.\",\"PeriodicalId\":49859,\"journal\":{\"name\":\"Mathematical Population Studies\",\"volume\":\"29 1\",\"pages\":\"31 - 46\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08898480.2021.1949923\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Population Studies\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/08898480.2021.1949923\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Population Studies","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/08898480.2021.1949923","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 3

摘要

数据集中极值的存在降低了方差估计器的效率。l矩基于随机变量的有序形式来估计总体的方差。这两个方差估计量用于校正分层随机抽样设计并依赖于辅助变量。提出的估计器使用l -矩的性质,如l -均值(也称为l -定位)、l -标准差(也称为l -缩放)和l -变异系数(这是变异的度量)。使用这些属性可以提供更好的估计器。仿真结果证明了这些估计器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variance estimation based on L-moments and auxiliary information
ABSTRACT The presence of extreme values in a data set reduces the efficiency of variance estimators. L-moments are based on the ordered form of a random variable to estimate the variance of the population. The two variance estimators are used for calibration to a stratified random sampling design and relying on an auxiliary variable. The proposed estimators use the properties of L-moments, such as the L-mean, also called L-location, the L-standard deviation, also called L-scaling, and the L-coefficient of variation, which is a measure of variation. The use of these properties allows for providing better estimators. A simulation proves the better efficiency of these estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Population Studies
Mathematical Population Studies 数学-数学跨学科应用
CiteScore
3.20
自引率
11.10%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical Population Studies publishes carefully selected research papers in the mathematical and statistical study of populations. The journal is strongly interdisciplinary and invites contributions by mathematicians, demographers, (bio)statisticians, sociologists, economists, biologists, epidemiologists, actuaries, geographers, and others who are interested in the mathematical formulation of population-related questions. The scope covers both theoretical and empirical work. Manuscripts should be sent to Manuscript central for review. The editor-in-chief has final say on the suitability for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信