{"title":"包含Polygamma函数的函数的完全单调性","authors":"K. Nantomah","doi":"10.30538/PSRP-EASL2018.0002","DOIUrl":null,"url":null,"abstract":"In this paper, we study completete monotonicity properties of the function $f_{a,k}(x)=\\psi^{(k)}(x+a) - \\psi^{(k)}(x) - \\frac{ak!}{x^{k+1}}$, where $a\\in(0,1)$ and $k\\in \\mathbb{N}_0$. Specifically, we consider the cases for $k\\in \\{ 2n: n\\in \\mathbb{N}_0 \\}$ and $k\\in \\{ 2n+1: n\\in \\mathbb{N}_0 \\}$. Subsequently, we deduce some inequalities involving the polygamma functions.","PeriodicalId":11518,"journal":{"name":"Engineering and Applied Science Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Complete Monotonicity Properties of a Function Involving the Polygamma Function\",\"authors\":\"K. Nantomah\",\"doi\":\"10.30538/PSRP-EASL2018.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study completete monotonicity properties of the function $f_{a,k}(x)=\\\\psi^{(k)}(x+a) - \\\\psi^{(k)}(x) - \\\\frac{ak!}{x^{k+1}}$, where $a\\\\in(0,1)$ and $k\\\\in \\\\mathbb{N}_0$. Specifically, we consider the cases for $k\\\\in \\\\{ 2n: n\\\\in \\\\mathbb{N}_0 \\\\}$ and $k\\\\in \\\\{ 2n+1: n\\\\in \\\\mathbb{N}_0 \\\\}$. Subsequently, we deduce some inequalities involving the polygamma functions.\",\"PeriodicalId\":11518,\"journal\":{\"name\":\"Engineering and Applied Science Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering and Applied Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/PSRP-EASL2018.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering and Applied Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/PSRP-EASL2018.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Complete Monotonicity Properties of a Function Involving the Polygamma Function
In this paper, we study completete monotonicity properties of the function $f_{a,k}(x)=\psi^{(k)}(x+a) - \psi^{(k)}(x) - \frac{ak!}{x^{k+1}}$, where $a\in(0,1)$ and $k\in \mathbb{N}_0$. Specifically, we consider the cases for $k\in \{ 2n: n\in \mathbb{N}_0 \}$ and $k\in \{ 2n+1: n\in \mathbb{N}_0 \}$. Subsequently, we deduce some inequalities involving the polygamma functions.