包含Polygamma函数的函数的完全单调性

K. Nantomah
{"title":"包含Polygamma函数的函数的完全单调性","authors":"K. Nantomah","doi":"10.30538/PSRP-EASL2018.0002","DOIUrl":null,"url":null,"abstract":"In this paper, we study completete monotonicity properties of the function $f_{a,k}(x)=\\psi^{(k)}(x+a) - \\psi^{(k)}(x) - \\frac{ak!}{x^{k+1}}$, where $a\\in(0,1)$ and $k\\in \\mathbb{N}_0$. Specifically, we consider the cases for $k\\in \\{ 2n: n\\in \\mathbb{N}_0 \\}$ and $k\\in \\{ 2n+1: n\\in \\mathbb{N}_0 \\}$. Subsequently, we deduce some inequalities involving the polygamma functions.","PeriodicalId":11518,"journal":{"name":"Engineering and Applied Science Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Complete Monotonicity Properties of a Function Involving the Polygamma Function\",\"authors\":\"K. Nantomah\",\"doi\":\"10.30538/PSRP-EASL2018.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study completete monotonicity properties of the function $f_{a,k}(x)=\\\\psi^{(k)}(x+a) - \\\\psi^{(k)}(x) - \\\\frac{ak!}{x^{k+1}}$, where $a\\\\in(0,1)$ and $k\\\\in \\\\mathbb{N}_0$. Specifically, we consider the cases for $k\\\\in \\\\{ 2n: n\\\\in \\\\mathbb{N}_0 \\\\}$ and $k\\\\in \\\\{ 2n+1: n\\\\in \\\\mathbb{N}_0 \\\\}$. Subsequently, we deduce some inequalities involving the polygamma functions.\",\"PeriodicalId\":11518,\"journal\":{\"name\":\"Engineering and Applied Science Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering and Applied Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/PSRP-EASL2018.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering and Applied Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/PSRP-EASL2018.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了函数$f_{a,k}(x)=\psi^{(k)}(x+a)-\psi^{{N}_0$。具体来说,我们考虑$k\in\{2n:n\in\mathbb的情况{N}_0\}$和$k\in\{2n+1:n\in\mathbb{N}_0\}$。随后,我们推导了一些涉及polygamma函数的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete Monotonicity Properties of a Function Involving the Polygamma Function
In this paper, we study completete monotonicity properties of the function $f_{a,k}(x)=\psi^{(k)}(x+a) - \psi^{(k)}(x) - \frac{ak!}{x^{k+1}}$, where $a\in(0,1)$ and $k\in \mathbb{N}_0$. Specifically, we consider the cases for $k\in \{ 2n: n\in \mathbb{N}_0 \}$ and $k\in \{ 2n+1: n\in \mathbb{N}_0 \}$. Subsequently, we deduce some inequalities involving the polygamma functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信