结合中分辨率和高分辨率卫星图像特征的植被和野生动物适宜栖息地

Q4 Agricultural and Biological Sciences
S. M. Razali, Zaiton Samdin, M. Lion
{"title":"结合中分辨率和高分辨率卫星图像特征的植被和野生动物适宜栖息地","authors":"S. M. Razali, Zaiton Samdin, M. Lion","doi":"10.22146/jtbb.77710","DOIUrl":null,"url":null,"abstract":"Combining different resolution of remote sensing satellites becomes a unique approach for vegetation and wildlife habitat assessment study. Remote sensing technology can reach land and water on the Earth's surface, and it can interpret signals from spectral responses. When these techniques are combined with Geographical Information Systems (GIS), land can be monitored in a variety of ways. Meanwhile, changes in land use led to changes in vegetation on the ground, with natural vegetation being removed from natural forests, leaving a degraded forest. This issue was not investigated for assessing habitat suitability for important plantations such as Eucalyptus plantation. Therefore, the study employed remote sensing and Geographical Information System (GIS) to model suitability of habitat to live and to survive in the Eucalyptus plantation. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) derived from a mathematical equation can demonstrate intensity of greenness of green vegetation in particular area and time, and availability of soil moisture, respectively, is very suitable to model the greenness of the area. WorldView-2 satellite image was pre-proceed, proceed, and classified to produce land use indicator in Sabah Softwoods Berhad plantation majoring Eucalyptus spp. tree planted in Tawau, Sabah. Sentinel and Landsat 8 image were used for vegetation and water stress indicator were downloaded from Land Viewer application. Net Primary Productivity (NPP) at monthly scale was also calculated and ranked the productivity for the suitability mapping. Climatic condition based on monthly precipitation and seasonality derived from ASEAN Specialized Meteorological Centre (ASMC) was employed for ranking its suitability value. In this study, natural forest and oil palm plantation is tested to developed suitability map for vegetation and wildlife habitat to live with. All indicators were ranked 10 to 40 presenting benefit and usefulness of the indicator to vegetation and wildlife in the study area. Then, final classification was made from accumulation of those indicators into 0 to 200 (Not suitable to Highly suitable). The results showed 59.9% of the area classified as moderately suitable, 36.9% highly suitable, 3.2% least suitable and no area was classified as not suitable. This type of study assisted forest managers and policymakers for better managing of their forests for better life of trees and wildlife under their management. The methodology adapted in the study is ecologically sounded and economically viable to be modified and complied in Sustainable Forest Management (SFM) in Malaysia and other tropical forest regions. ","PeriodicalId":52402,"journal":{"name":"Journal of Tropical Biodiversity and Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Moderate and High Resolution of Satellite Images for Characterizing Suitable Habitat for Vegetation and Wildlife\",\"authors\":\"S. M. Razali, Zaiton Samdin, M. Lion\",\"doi\":\"10.22146/jtbb.77710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining different resolution of remote sensing satellites becomes a unique approach for vegetation and wildlife habitat assessment study. Remote sensing technology can reach land and water on the Earth's surface, and it can interpret signals from spectral responses. When these techniques are combined with Geographical Information Systems (GIS), land can be monitored in a variety of ways. Meanwhile, changes in land use led to changes in vegetation on the ground, with natural vegetation being removed from natural forests, leaving a degraded forest. This issue was not investigated for assessing habitat suitability for important plantations such as Eucalyptus plantation. Therefore, the study employed remote sensing and Geographical Information System (GIS) to model suitability of habitat to live and to survive in the Eucalyptus plantation. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) derived from a mathematical equation can demonstrate intensity of greenness of green vegetation in particular area and time, and availability of soil moisture, respectively, is very suitable to model the greenness of the area. WorldView-2 satellite image was pre-proceed, proceed, and classified to produce land use indicator in Sabah Softwoods Berhad plantation majoring Eucalyptus spp. tree planted in Tawau, Sabah. Sentinel and Landsat 8 image were used for vegetation and water stress indicator were downloaded from Land Viewer application. Net Primary Productivity (NPP) at monthly scale was also calculated and ranked the productivity for the suitability mapping. Climatic condition based on monthly precipitation and seasonality derived from ASEAN Specialized Meteorological Centre (ASMC) was employed for ranking its suitability value. In this study, natural forest and oil palm plantation is tested to developed suitability map for vegetation and wildlife habitat to live with. All indicators were ranked 10 to 40 presenting benefit and usefulness of the indicator to vegetation and wildlife in the study area. Then, final classification was made from accumulation of those indicators into 0 to 200 (Not suitable to Highly suitable). The results showed 59.9% of the area classified as moderately suitable, 36.9% highly suitable, 3.2% least suitable and no area was classified as not suitable. This type of study assisted forest managers and policymakers for better managing of their forests for better life of trees and wildlife under their management. The methodology adapted in the study is ecologically sounded and economically viable to be modified and complied in Sustainable Forest Management (SFM) in Malaysia and other tropical forest regions. \",\"PeriodicalId\":52402,\"journal\":{\"name\":\"Journal of Tropical Biodiversity and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tropical Biodiversity and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/jtbb.77710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tropical Biodiversity and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jtbb.77710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

将不同分辨率的遥感卫星相结合,成为植被和野生动物栖息地评估研究的一种独特方法。遥感技术可以到达地球表面的陆地和水域,并可以从光谱响应中解释信号。当这些技术与地理信息系统相结合时,可以通过各种方式对土地进行监测。与此同时,土地利用的变化导致了地面植被的变化,天然植被被从天然林中移除,留下了退化的森林。这一问题没有被用于评估重要人工林(如桉树人工林)的栖息地适宜性。因此,本研究采用遥感和地理信息系统(GIS)对桉树人工林生境的适宜性进行了建模。从数学方程推导出的归一化差异植被指数(NDVI)和归一化差异水分指数(NDWI)可以分别反映特定区域和时间内绿色植被的绿色强度,土壤水分的有效性非常适合于对该区域的绿色度进行建模。对WorldView-2卫星图像进行了预处理、处理和分类,以产生沙巴Softwoods Berhad种植园的土地利用指标,该种植园主要种植在沙巴Tawau的桉树。Sentinel和Landsat 8图像用于植被,水分胁迫指标从Land Viewer应用程序下载。还计算了月度净初级生产力(NPP),并对适用性图的生产力进行了排名。采用东盟专业气象中心(ASMC)基于月降水量和季节性的气候条件对其适宜性值进行排名。在本研究中,对天然林和油棕种植园进行了测试,以开发植被和野生动物栖息地的适宜性地图。所有指标排名为10至40位,表明该指标对研究区域植被和野生动物的益处和有用性。然后,根据这些指标的累积,将其最终分类为0到200(不适合到高度适合)。结果表明,59.9%的区域被划分为中度适宜,36.9%的区域为高度适宜,3.2%的区域为最不适宜,没有一个区域被归类为不适宜。这类研究有助于森林管理者和政策制定者更好地管理森林,改善其管理下的树木和野生动物的生活。该研究中采用的方法在生态上合理,在经济上可行,可在马来西亚和其他热带森林地区的可持续森林管理中进行修改和遵守。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Moderate and High Resolution of Satellite Images for Characterizing Suitable Habitat for Vegetation and Wildlife
Combining different resolution of remote sensing satellites becomes a unique approach for vegetation and wildlife habitat assessment study. Remote sensing technology can reach land and water on the Earth's surface, and it can interpret signals from spectral responses. When these techniques are combined with Geographical Information Systems (GIS), land can be monitored in a variety of ways. Meanwhile, changes in land use led to changes in vegetation on the ground, with natural vegetation being removed from natural forests, leaving a degraded forest. This issue was not investigated for assessing habitat suitability for important plantations such as Eucalyptus plantation. Therefore, the study employed remote sensing and Geographical Information System (GIS) to model suitability of habitat to live and to survive in the Eucalyptus plantation. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) derived from a mathematical equation can demonstrate intensity of greenness of green vegetation in particular area and time, and availability of soil moisture, respectively, is very suitable to model the greenness of the area. WorldView-2 satellite image was pre-proceed, proceed, and classified to produce land use indicator in Sabah Softwoods Berhad plantation majoring Eucalyptus spp. tree planted in Tawau, Sabah. Sentinel and Landsat 8 image were used for vegetation and water stress indicator were downloaded from Land Viewer application. Net Primary Productivity (NPP) at monthly scale was also calculated and ranked the productivity for the suitability mapping. Climatic condition based on monthly precipitation and seasonality derived from ASEAN Specialized Meteorological Centre (ASMC) was employed for ranking its suitability value. In this study, natural forest and oil palm plantation is tested to developed suitability map for vegetation and wildlife habitat to live with. All indicators were ranked 10 to 40 presenting benefit and usefulness of the indicator to vegetation and wildlife in the study area. Then, final classification was made from accumulation of those indicators into 0 to 200 (Not suitable to Highly suitable). The results showed 59.9% of the area classified as moderately suitable, 36.9% highly suitable, 3.2% least suitable and no area was classified as not suitable. This type of study assisted forest managers and policymakers for better managing of their forests for better life of trees and wildlife under their management. The methodology adapted in the study is ecologically sounded and economically viable to be modified and complied in Sustainable Forest Management (SFM) in Malaysia and other tropical forest regions. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Tropical Biodiversity and Biotechnology
Journal of Tropical Biodiversity and Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
1.10
自引率
0.00%
发文量
40
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信