在\伽马-hypersemigroups美元

IF 0.8 4区 数学 Q2 MATHEMATICS
N. Kehayopulu
{"title":"在\\伽马-hypersemigroups美元","authors":"N. Kehayopulu","doi":"10.55730/1300-0098.3414","DOIUrl":null,"url":null,"abstract":": The results on Γ -hypersemigroups are obtained either as corollaries of corresponding results on ∨ e or poe - semigroups or on the line of the corresponding results on le -semigroups. It has come to our attention that Theorem 3.22 in [4] cannot be obtained as corollary to Theorem 2.2 of the same paper as for a Γ -hypersemigroup, ( P ∗ ( M ) , Γ , ⊆ ) is a ∨ e -semigroup and not an le -semigroup. Also on p. 1850, l. 12 in [4], the “ le -semigroup” should be changed to “ ∨ e -semigroup”. In the present paper we prove Theorems 3.26 and 3.28 stated without proof in [4]. On this occasion, some further results are given to emphasize what we say. The results on Γ -hypersemigroups are obtained from the more abstract structure of the poe -semigroups. Further investigation on poe -semigroups and le -semigroups is interesting.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On $\\\\Gamma$-hypersemigroups\",\"authors\":\"N. Kehayopulu\",\"doi\":\"10.55730/1300-0098.3414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The results on Γ -hypersemigroups are obtained either as corollaries of corresponding results on ∨ e or poe - semigroups or on the line of the corresponding results on le -semigroups. It has come to our attention that Theorem 3.22 in [4] cannot be obtained as corollary to Theorem 2.2 of the same paper as for a Γ -hypersemigroup, ( P ∗ ( M ) , Γ , ⊆ ) is a ∨ e -semigroup and not an le -semigroup. Also on p. 1850, l. 12 in [4], the “ le -semigroup” should be changed to “ ∨ e -semigroup”. In the present paper we prove Theorems 3.26 and 3.28 stated without proof in [4]. On this occasion, some further results are given to emphasize what we say. The results on Γ -hypersemigroups are obtained from the more abstract structure of the poe -semigroups. Further investigation on poe -semigroups and le -semigroups is interesting.\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3414\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.55730/1300-0098.3414","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Γ-超半群上的结果要么是作为∧e或poe-半群上相应结果的推论,要么是在le-半群上对应结果的线上。我们注意到[4]中的定理3.22不能作为同一篇论文中定理2.2的推论得到,因为对于Γ-超半群,(P*(M),Γ,⊆)是一个∧e-半群,而不是一个le-半群。同样在第1850页,第12页[4]中,“le-半群”应改为“∧e-半群。在本文中,我们证明了[4]中未经证明的定理3.26和3.28。在这个场合,我们给出了一些进一步的结果来强调我们所说的。Γ-超半群的结果是由poe-半群的更抽象的结构得到的。对poe-半群和le-半群的进一步研究是有意义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On $\Gamma$-hypersemigroups
: The results on Γ -hypersemigroups are obtained either as corollaries of corresponding results on ∨ e or poe - semigroups or on the line of the corresponding results on le -semigroups. It has come to our attention that Theorem 3.22 in [4] cannot be obtained as corollary to Theorem 2.2 of the same paper as for a Γ -hypersemigroup, ( P ∗ ( M ) , Γ , ⊆ ) is a ∨ e -semigroup and not an le -semigroup. Also on p. 1850, l. 12 in [4], the “ le -semigroup” should be changed to “ ∨ e -semigroup”. In the present paper we prove Theorems 3.26 and 3.28 stated without proof in [4]. On this occasion, some further results are given to emphasize what we say. The results on Γ -hypersemigroups are obtained from the more abstract structure of the poe -semigroups. Further investigation on poe -semigroups and le -semigroups is interesting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信