一个重参数不变非相对论系统的超变量和BRST方法

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, PARTICLES & FIELDS
A. Rao, A. Tripathi, R. Malik
{"title":"一个重参数不变非相对论系统的超变量和BRST方法","authors":"A. Rao, A. Tripathi, R. Malik","doi":"10.1155/2021/5593434.","DOIUrl":null,"url":null,"abstract":"<jats:p>We exploit the theoretical strength of the supervariable and Becchi-Rouet-Stora-Tyutin (BRST) formalisms to derive the proper (i.e., off-shell nilpotent and absolutely anticommuting) (anti-)BRST symmetry transformations for the reparameterization invariant model of a nonrelativistic (NR) free particle whose space <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> and time <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>t</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> variables are a function of an evolution parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>τ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>. The infinitesimal reparameterization (i.e., 1D diffeomorphism) symmetry transformation of our theory is defined w.r.t. this evolution parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>τ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>. We apply the modified Bonora-Tonin (BT) supervariable approach (MBTSA) as well as the (anti)chiral supervariable approach (ACSA) to BRST formalism to discuss various aspects of our present system. For this purpose, our 1D ordinary theory (parameterized by <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>τ</mi>\n </math>\n </jats:inline-formula>) is generalized onto a <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-dimensional supermanifold which is characterized by the superspace coordinates <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msup>\n <mrow>\n <mi>Z</mi>\n </mrow>\n <mrow>\n <mi>M</mi>\n </mrow>\n </msup>\n <mo>=</mo>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>τ</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>,</mo>\n <mover accent=\"true\">\n <mi>θ</mi>\n <mo stretchy=\"true\">¯</mo>\n </mover>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> where a pair of the Grassmannian variables satisfy the fermionic relationships: <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <msup>\n <mrow>\n <mi>θ</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>=</mo>\n <msup>\n <mrow>\n <mover accent=\"true\">\n <mi>θ</mi>\n <mo stretchy=\"true\">¯</mo>\n </mover>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>θ</mi>\n <mtext> </mtext>\n <mover accent=\"true\">\n <mi>θ</mi>\n <mo stretchy=\"true\">¯</mo>\n </mover>\n <mo>+</mo>\n <mover accent=\"true\">\n <mi>θ</mi>\n <mo stretchy=\"true\">¯</mo>\n </mover>\n <mtext> </mtext>\n <mi>θ</mi>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>τ</mi>\n </math>\n </jats:inline-formula> is the bosonic evolution parameter. In the context of ACSA, we take into account only the <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-dimensional (anti)chiral super submanifolds of the general<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-dimensional supermanifold. The derivation of the universal Curci-Ferrari- (CF-) type restriction, from various underlying theoretical methods, is a novel observation in our present endeavor. Furthermore, we note that the form of the gauge-fixing and Faddeev-Popov ghost terms for our NR and non-SUSY system is exactly the same as that of the reparameterization invariant SUSY (i.e., spinning) and non-SUSY (i.e., scalar) relativistic particles. This is a novel observation, too.</jats:p>","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Supervariable and BRST Approaches to a Reparameterization Invariant Nonrelativistic System\",\"authors\":\"A. Rao, A. Tripathi, R. Malik\",\"doi\":\"10.1155/2021/5593434.\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>We exploit the theoretical strength of the supervariable and Becchi-Rouet-Stora-Tyutin (BRST) formalisms to derive the proper (i.e., off-shell nilpotent and absolutely anticommuting) (anti-)BRST symmetry transformations for the reparameterization invariant model of a nonrelativistic (NR) free particle whose space <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> and time <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> variables are a function of an evolution parameter <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>τ</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>. The infinitesimal reparameterization (i.e., 1D diffeomorphism) symmetry transformation of our theory is defined w.r.t. this evolution parameter <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>τ</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>. We apply the modified Bonora-Tonin (BT) supervariable approach (MBTSA) as well as the (anti)chiral supervariable approach (ACSA) to BRST formalism to discuss various aspects of our present system. For this purpose, our 1D ordinary theory (parameterized by <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>τ</mi>\\n </math>\\n </jats:inline-formula>) is generalized onto a <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>-dimensional supermanifold which is characterized by the superspace coordinates <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <msup>\\n <mrow>\\n <mi>Z</mi>\\n </mrow>\\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n </msup>\\n <mo>=</mo>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>τ</mi>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>,</mo>\\n <mover accent=\\\"true\\\">\\n <mi>θ</mi>\\n <mo stretchy=\\\"true\\\">¯</mo>\\n </mover>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> where a pair of the Grassmannian variables satisfy the fermionic relationships: <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <msup>\\n <mrow>\\n <mi>θ</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mo>=</mo>\\n <msup>\\n <mrow>\\n <mover accent=\\\"true\\\">\\n <mi>θ</mi>\\n <mo stretchy=\\\"true\\\">¯</mo>\\n </mover>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mo>=</mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mi>θ</mi>\\n <mtext> </mtext>\\n <mover accent=\\\"true\\\">\\n <mi>θ</mi>\\n <mo stretchy=\\\"true\\\">¯</mo>\\n </mover>\\n <mo>+</mo>\\n <mover accent=\\\"true\\\">\\n <mi>θ</mi>\\n <mo stretchy=\\\"true\\\">¯</mo>\\n </mover>\\n <mtext> </mtext>\\n <mi>θ</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula>, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mi>τ</mi>\\n </math>\\n </jats:inline-formula> is the bosonic evolution parameter. In the context of ACSA, we take into account only the <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>-dimensional (anti)chiral super submanifolds of the general<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>-dimensional supermanifold. The derivation of the universal Curci-Ferrari- (CF-) type restriction, from various underlying theoretical methods, is a novel observation in our present endeavor. Furthermore, we note that the form of the gauge-fixing and Faddeev-Popov ghost terms for our NR and non-SUSY system is exactly the same as that of the reparameterization invariant SUSY (i.e., spinning) and non-SUSY (i.e., scalar) relativistic particles. This is a novel observation, too.</jats:p>\",\"PeriodicalId\":7498,\"journal\":{\"name\":\"Advances in High Energy Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5593434.\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/5593434.","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 5

摘要

我们利用超变量和Becchi Rouet Stora Tyutin(BRST)形式的理论强度,导出了非相对论(NR)自由粒子的重参数化不变量模型的正确(即,外壳外幂零和绝对反共轭)(反)BRST对称变换x和时间t变量是进化参数的函数τ。关于这个演化参数τ,定义了我们理论的无穷小重参数化(即1D微分同胚)对称变换。我们将改进的Bonora-Tonin(BT)超变量方法(MBTSA)和(反)手性超变量方法)应用于BRST形式,以讨论我们当前系统的各个方面。为此将我们的1D常理论(用τ参数化)推广到1,以超空间坐标ZM为特征的二维超流形=τ,θ,θ,其中一对格拉斯曼变量满足费米子关系:θ2=θ2=0,θ  θ+θ  θ=0,τ是玻色子演化参数。在ACSA的上下文中,一般1,1的一维(反)手性超子流形,二维的超级模型。从各种潜在的理论方法推导出普遍的Curci-Ferrari(CF-)型限制,是我们目前努力的一个新的观察结果。此外,我们注意到,我们的NR和非SUSY系统的规范固定和Faddeev-Popov重影项的形式与重新参数化不变SUSY的形式完全相同(即。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervariable and BRST Approaches to a Reparameterization Invariant Nonrelativistic System
We exploit the theoretical strength of the supervariable and Becchi-Rouet-Stora-Tyutin (BRST) formalisms to derive the proper (i.e., off-shell nilpotent and absolutely anticommuting) (anti-)BRST symmetry transformations for the reparameterization invariant model of a nonrelativistic (NR) free particle whose space x and time t variables are a function of an evolution parameter τ . The infinitesimal reparameterization (i.e., 1D diffeomorphism) symmetry transformation of our theory is defined w.r.t. this evolution parameter τ . We apply the modified Bonora-Tonin (BT) supervariable approach (MBTSA) as well as the (anti)chiral supervariable approach (ACSA) to BRST formalism to discuss various aspects of our present system. For this purpose, our 1D ordinary theory (parameterized by τ ) is generalized onto a 1 , 2 -dimensional supermanifold which is characterized by the superspace coordinates Z M = τ , θ , θ ¯ where a pair of the Grassmannian variables satisfy the fermionic relationships: θ 2 = θ ¯ 2 = 0 , θ θ ¯ + θ ¯ θ = 0 , and τ is the bosonic evolution parameter. In the context of ACSA, we take into account only the 1 , 1 -dimensional (anti)chiral super submanifolds of the general 1 , 2 -dimensional supermanifold. The derivation of the universal Curci-Ferrari- (CF-) type restriction, from various underlying theoretical methods, is a novel observation in our present endeavor. Furthermore, we note that the form of the gauge-fixing and Faddeev-Popov ghost terms for our NR and non-SUSY system is exactly the same as that of the reparameterization invariant SUSY (i.e., spinning) and non-SUSY (i.e., scalar) relativistic particles. This is a novel observation, too.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in High Energy Physics
Advances in High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
3.40
自引率
5.90%
发文量
55
审稿时长
6-12 weeks
期刊介绍: Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信