{"title":"一种鲁棒ANN-PID校正器的设计与实现,以改善高穿透光伏太阳能并网","authors":"D. Gueye, A. Ndiaye, Amadou Diao","doi":"10.30521/jes.1053423","DOIUrl":null,"url":null,"abstract":"The best quality of PV energy into the grid is now problematic that is why this paper focuses on the design and implementation of a robust Proportional Integral Derivative based on Artificial Neural Network (ANN-PID). This technique used to ensure the regulation of the Boost Converter (BC) output voltage and the Three Phase Inverter (3 PI) output currents of a photovoltaic solar system (PVS) connected to the grid. The mathematical model of the DC bus and the 3-PI is presented. Applications under Matlab/Simulink justify the efficiency of the neural regulator. In comparison with the conventional one, the proposed method presents the best follow-up of the DC link voltage reference and a maximum overshoot of 3.16 %. In addition, despite the long time put in transient mode, the proposed method keeps better robustness and ensures an injection of current of a total harmonic distortion (THD) of 0.96 % against 2.18 % of the classical PID regulator.","PeriodicalId":52308,"journal":{"name":"Journal of Energy Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and implementation of a robust ANN-PID corrector to improve high penetrations photovoltaic solar energy connected to the grid\",\"authors\":\"D. Gueye, A. Ndiaye, Amadou Diao\",\"doi\":\"10.30521/jes.1053423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The best quality of PV energy into the grid is now problematic that is why this paper focuses on the design and implementation of a robust Proportional Integral Derivative based on Artificial Neural Network (ANN-PID). This technique used to ensure the regulation of the Boost Converter (BC) output voltage and the Three Phase Inverter (3 PI) output currents of a photovoltaic solar system (PVS) connected to the grid. The mathematical model of the DC bus and the 3-PI is presented. Applications under Matlab/Simulink justify the efficiency of the neural regulator. In comparison with the conventional one, the proposed method presents the best follow-up of the DC link voltage reference and a maximum overshoot of 3.16 %. In addition, despite the long time put in transient mode, the proposed method keeps better robustness and ensures an injection of current of a total harmonic distortion (THD) of 0.96 % against 2.18 % of the classical PID regulator.\",\"PeriodicalId\":52308,\"journal\":{\"name\":\"Journal of Energy Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30521/jes.1053423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30521/jes.1053423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Design and implementation of a robust ANN-PID corrector to improve high penetrations photovoltaic solar energy connected to the grid
The best quality of PV energy into the grid is now problematic that is why this paper focuses on the design and implementation of a robust Proportional Integral Derivative based on Artificial Neural Network (ANN-PID). This technique used to ensure the regulation of the Boost Converter (BC) output voltage and the Three Phase Inverter (3 PI) output currents of a photovoltaic solar system (PVS) connected to the grid. The mathematical model of the DC bus and the 3-PI is presented. Applications under Matlab/Simulink justify the efficiency of the neural regulator. In comparison with the conventional one, the proposed method presents the best follow-up of the DC link voltage reference and a maximum overshoot of 3.16 %. In addition, despite the long time put in transient mode, the proposed method keeps better robustness and ensures an injection of current of a total harmonic distortion (THD) of 0.96 % against 2.18 % of the classical PID regulator.