Kantorovich-Shilkret拟插值神经网络算子的定量逼近

IF 0.5 Q3 MATHEMATICS
G. Anastassiou
{"title":"Kantorovich-Shilkret拟插值神经网络算子的定量逼近","authors":"G. Anastassiou","doi":"10.4067/S0719-06462018000300001","DOIUrl":null,"url":null,"abstract":"In this article we present multivariate basic approximation by a Kantorovich-Shilkret type quasi-interpolation neural network operator with respect to supremum norm. This is done with rates using the multivariate modulus of continuity. We approximate continuous and bounded functions on ℝN, N ∈ ℕ. When they are additionally uniformly continuous we derive pointwise and uniform convergences.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4067/S0719-06462018000300001","citationCount":"2","resultStr":"{\"title\":\"Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator\",\"authors\":\"G. Anastassiou\",\"doi\":\"10.4067/S0719-06462018000300001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we present multivariate basic approximation by a Kantorovich-Shilkret type quasi-interpolation neural network operator with respect to supremum norm. This is done with rates using the multivariate modulus of continuity. We approximate continuous and bounded functions on ℝN, N ∈ ℕ. When they are additionally uniformly continuous we derive pointwise and uniform convergences.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4067/S0719-06462018000300001\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/S0719-06462018000300001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/S0719-06462018000300001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文利用Kantorovich-Shilkret型拟插值神经网络算子,给出了关于上范数的多元基本逼近。这是通过使用连续性的多元模数来实现的。我们近似于连续有界函数在N上,N∈N。当它们是额外的一致连续时,我们导出了点收敛性和一致收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator
In this article we present multivariate basic approximation by a Kantorovich-Shilkret type quasi-interpolation neural network operator with respect to supremum norm. This is done with rates using the multivariate modulus of continuity. We approximate continuous and bounded functions on ℝN, N ∈ ℕ. When they are additionally uniformly continuous we derive pointwise and uniform convergences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信