多功能作为隐形眼镜材料的设计原则

Q1 Materials Science
H. Sahabudeen, Rainhard Machatschek, A. Lendlein
{"title":"多功能作为隐形眼镜材料的设计原则","authors":"H. Sahabudeen, Rainhard Machatschek, A. Lendlein","doi":"10.1088/2399-7532/ac1e7d","DOIUrl":null,"url":null,"abstract":"From synthesis through storage to disposal, contact lenses (CLs) interact with different system environments throughout their functional life cycle. To fulfill their therapeutic purpose, they need to exhibit a distinct behavior in each of them, which is achieved through a combination of different material functions. As such, CL materials are a showcase of highly advanced and mass-produced multifunctional biomaterials. Their great relevance and long history mean that a vast amount of work has gone into the implementation of ever more advanced functions. From understanding the approaches used to achieve multifunctionality in CLs, a lot of inspiration for the design of other multifunctional medical devices can be drawn. Therefore, here, we provide a systematic overview of the different functions that are combined in today’s CL materials, together with their quantification methods, chemical design principles and fabrication techniques. We further provide an outlook on the functions that are currently under investigation for the next generation of commercial CLs.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multifunctionality as design principle for contact lens materials\",\"authors\":\"H. Sahabudeen, Rainhard Machatschek, A. Lendlein\",\"doi\":\"10.1088/2399-7532/ac1e7d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From synthesis through storage to disposal, contact lenses (CLs) interact with different system environments throughout their functional life cycle. To fulfill their therapeutic purpose, they need to exhibit a distinct behavior in each of them, which is achieved through a combination of different material functions. As such, CL materials are a showcase of highly advanced and mass-produced multifunctional biomaterials. Their great relevance and long history mean that a vast amount of work has gone into the implementation of ever more advanced functions. From understanding the approaches used to achieve multifunctionality in CLs, a lot of inspiration for the design of other multifunctional medical devices can be drawn. Therefore, here, we provide a systematic overview of the different functions that are combined in today’s CL materials, together with their quantification methods, chemical design principles and fabrication techniques. We further provide an outlook on the functions that are currently under investigation for the next generation of commercial CLs.\",\"PeriodicalId\":18949,\"journal\":{\"name\":\"Multifunctional Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multifunctional Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-7532/ac1e7d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multifunctional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-7532/ac1e7d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

摘要

从合成到储存再到处置,隐形眼镜(cl)在其整个功能生命周期中与不同的系统环境相互作用。为了实现它们的治疗目的,它们需要在每个细胞中表现出不同的行为,这是通过不同材料功能的组合来实现的。因此,CL材料是高度先进和批量生产的多功能生物材料的展示。它们的巨大相关性和悠久历史意味着为实现更高级的功能需要进行大量的工作。通过了解用于在CLs中实现多功能的方法,可以为其他多功能医疗设备的设计提供许多灵感。因此,在这里,我们提供了不同的功能,结合在今天的CL材料的系统概述,连同他们的量化方法,化学设计原则和制造技术。我们进一步展望了下一代商用cl目前正在研究的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifunctionality as design principle for contact lens materials
From synthesis through storage to disposal, contact lenses (CLs) interact with different system environments throughout their functional life cycle. To fulfill their therapeutic purpose, they need to exhibit a distinct behavior in each of them, which is achieved through a combination of different material functions. As such, CL materials are a showcase of highly advanced and mass-produced multifunctional biomaterials. Their great relevance and long history mean that a vast amount of work has gone into the implementation of ever more advanced functions. From understanding the approaches used to achieve multifunctionality in CLs, a lot of inspiration for the design of other multifunctional medical devices can be drawn. Therefore, here, we provide a systematic overview of the different functions that are combined in today’s CL materials, together with their quantification methods, chemical design principles and fabrication techniques. We further provide an outlook on the functions that are currently under investigation for the next generation of commercial CLs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multifunctional Materials
Multifunctional Materials Materials Science-Materials Science (miscellaneous)
CiteScore
12.80
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信