向量场李代数的范畴数学O (I):倾斜模和特征公式

IF 1.1 2区 数学 Q1 MATHEMATICS
Feifei Duan, B. Shu, Yufeng Yao
{"title":"向量场李代数的范畴数学O (I):倾斜模和特征公式","authors":"Feifei Duan, B. Shu, Yufeng Yao","doi":"10.4171/prims/56-4-3","DOIUrl":null,"url":null,"abstract":"In this article, we exploit the theory of graded module category with semi-infinite character developed by Soergel in \\cite{Soe} to study representations of the infinite dimensional Lie algebras of vector fields $W(n), S(n)$ and $H(n)$ $(n\\geq 2)$, and obtain the description of indecomposable tilting modules. The character formulas for those tilting modules are determined.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/prims/56-4-3","citationCount":"1","resultStr":"{\"title\":\"The Category $\\\\mathcal O$ for Lie Algebras of Vector Fields (I): Tilting Modules and Character Formulas\",\"authors\":\"Feifei Duan, B. Shu, Yufeng Yao\",\"doi\":\"10.4171/prims/56-4-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we exploit the theory of graded module category with semi-infinite character developed by Soergel in \\\\cite{Soe} to study representations of the infinite dimensional Lie algebras of vector fields $W(n), S(n)$ and $H(n)$ $(n\\\\geq 2)$, and obtain the description of indecomposable tilting modules. The character formulas for those tilting modules are determined.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/prims/56-4-3\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/56-4-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/56-4-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文利用Soergel在\cite{Soe}中提出的具有半无穷特征的梯度模范畴理论,研究了向量场$W(n), S(n)$和$H(n)$$(n\geq 2)$的无限维李代数的表示,得到了不可分解的可倾模的描述。确定了这些倾斜模块的字符表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Category $\mathcal O$ for Lie Algebras of Vector Fields (I): Tilting Modules and Character Formulas
In this article, we exploit the theory of graded module category with semi-infinite character developed by Soergel in \cite{Soe} to study representations of the infinite dimensional Lie algebras of vector fields $W(n), S(n)$ and $H(n)$ $(n\geq 2)$, and obtain the description of indecomposable tilting modules. The character formulas for those tilting modules are determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信