{"title":"向量场李代数的范畴数学O (I):倾斜模和特征公式","authors":"Feifei Duan, B. Shu, Yufeng Yao","doi":"10.4171/prims/56-4-3","DOIUrl":null,"url":null,"abstract":"In this article, we exploit the theory of graded module category with semi-infinite character developed by Soergel in \\cite{Soe} to study representations of the infinite dimensional Lie algebras of vector fields $W(n), S(n)$ and $H(n)$ $(n\\geq 2)$, and obtain the description of indecomposable tilting modules. The character formulas for those tilting modules are determined.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/prims/56-4-3","citationCount":"1","resultStr":"{\"title\":\"The Category $\\\\mathcal O$ for Lie Algebras of Vector Fields (I): Tilting Modules and Character Formulas\",\"authors\":\"Feifei Duan, B. Shu, Yufeng Yao\",\"doi\":\"10.4171/prims/56-4-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we exploit the theory of graded module category with semi-infinite character developed by Soergel in \\\\cite{Soe} to study representations of the infinite dimensional Lie algebras of vector fields $W(n), S(n)$ and $H(n)$ $(n\\\\geq 2)$, and obtain the description of indecomposable tilting modules. The character formulas for those tilting modules are determined.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/prims/56-4-3\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/56-4-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/56-4-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Category $\mathcal O$ for Lie Algebras of Vector Fields (I): Tilting Modules and Character Formulas
In this article, we exploit the theory of graded module category with semi-infinite character developed by Soergel in \cite{Soe} to study representations of the infinite dimensional Lie algebras of vector fields $W(n), S(n)$ and $H(n)$ $(n\geq 2)$, and obtain the description of indecomposable tilting modules. The character formulas for those tilting modules are determined.
期刊介绍:
The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.