传导碰撞湍流磁化等离子体中散射电磁波的时间谱

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
G. Jandieri, A. Ishimaru, B. Rawat, N. Tugushi
{"title":"传导碰撞湍流磁化等离子体中散射电磁波的时间谱","authors":"G. Jandieri, A. Ishimaru, B. Rawat, N. Tugushi","doi":"10.7716/aem.v11i1.1859","DOIUrl":null,"url":null,"abstract":"Using WKB method the peculiarities of the temporal spectrum of an ordinary and extraordinary electromagnetic wave scattered in a weakly randomly inhomogeneous three-dimensional nonstationary and conductive magnetized plasma are investigated. On the basis of the stochastic differential transport equation for the frequency fluctuation the broadening and the displacement of the temporal spectrum for both waves are obtained for the polar terrestrial ionosphere. These statistical characteristics contains anisotropic parameters: velocity of a plasma stream, conductivities of the ionosphere, elongated electron density irregularities are characterized by the anisotropy factor and inclination angle with respect to the geomagnetic lines of forces. The analysis of the power spectrum of the waves as a function of the propagation distance and the nondimensional frequency parameter containing the carrier frequency and characteristic temporal scale of electron density fluctuations are carried out. Analytical and numerical calculations have shown that the terrestrial conductivity and anisotropy factors exert a substantial influence on evaluation of the temporal spectrum than the inclination angle. It was found that the wave spectrum increases initially as the square root of the propagation distance, but at large distances it approaches a limiting value. Statistical moments of a scattered ordinary and extraordinary waves do not depend on an absorption sign and valid for both absorptive and active media.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Temporal Spectrum of a Scattered Electromagnetic Waves in the Conductive Collision Turbulent Magnetized Plasma\",\"authors\":\"G. Jandieri, A. Ishimaru, B. Rawat, N. Tugushi\",\"doi\":\"10.7716/aem.v11i1.1859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using WKB method the peculiarities of the temporal spectrum of an ordinary and extraordinary electromagnetic wave scattered in a weakly randomly inhomogeneous three-dimensional nonstationary and conductive magnetized plasma are investigated. On the basis of the stochastic differential transport equation for the frequency fluctuation the broadening and the displacement of the temporal spectrum for both waves are obtained for the polar terrestrial ionosphere. These statistical characteristics contains anisotropic parameters: velocity of a plasma stream, conductivities of the ionosphere, elongated electron density irregularities are characterized by the anisotropy factor and inclination angle with respect to the geomagnetic lines of forces. The analysis of the power spectrum of the waves as a function of the propagation distance and the nondimensional frequency parameter containing the carrier frequency and characteristic temporal scale of electron density fluctuations are carried out. Analytical and numerical calculations have shown that the terrestrial conductivity and anisotropy factors exert a substantial influence on evaluation of the temporal spectrum than the inclination angle. It was found that the wave spectrum increases initially as the square root of the propagation distance, but at large distances it approaches a limiting value. Statistical moments of a scattered ordinary and extraordinary waves do not depend on an absorption sign and valid for both absorptive and active media.\",\"PeriodicalId\":44653,\"journal\":{\"name\":\"Advanced Electromagnetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7716/aem.v11i1.1859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v11i1.1859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

利用WKB方法研究了弱随机非均匀三维非平稳导电磁化等离子体中散射的普通和非常电磁波的时间谱特性。基于频率波动的随机微分输运方程,得到了极地电离层两种波的时间谱的加宽和位移。这些统计特征包含各向异性参数:等离子体流的速度、电离层的电导率、拉长的电子密度不规则性以各向异性因子和相对于地磁力线的倾角为特征。分析了波的功率谱作为传播距离的函数,以及包含载波频率和电子密度波动的特征时间尺度的无量纲频率参数。分析和数值计算表明,陆地电导率和各向异性因素对时间光谱的评估比倾角影响更大。研究发现,波谱最初随着传播距离的平方根而增加,但在大距离时,它接近极限值。散射寻常波和非常波的统计矩不取决于吸收符号,对吸收介质和活性介质都有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal Spectrum of a Scattered Electromagnetic Waves in the Conductive Collision Turbulent Magnetized Plasma
Using WKB method the peculiarities of the temporal spectrum of an ordinary and extraordinary electromagnetic wave scattered in a weakly randomly inhomogeneous three-dimensional nonstationary and conductive magnetized plasma are investigated. On the basis of the stochastic differential transport equation for the frequency fluctuation the broadening and the displacement of the temporal spectrum for both waves are obtained for the polar terrestrial ionosphere. These statistical characteristics contains anisotropic parameters: velocity of a plasma stream, conductivities of the ionosphere, elongated electron density irregularities are characterized by the anisotropy factor and inclination angle with respect to the geomagnetic lines of forces. The analysis of the power spectrum of the waves as a function of the propagation distance and the nondimensional frequency parameter containing the carrier frequency and characteristic temporal scale of electron density fluctuations are carried out. Analytical and numerical calculations have shown that the terrestrial conductivity and anisotropy factors exert a substantial influence on evaluation of the temporal spectrum than the inclination angle. It was found that the wave spectrum increases initially as the square root of the propagation distance, but at large distances it approaches a limiting value. Statistical moments of a scattered ordinary and extraordinary waves do not depend on an absorption sign and valid for both absorptive and active media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electromagnetics
Advanced Electromagnetics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.40
自引率
12.50%
发文量
33
审稿时长
10 weeks
期刊介绍: Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信