{"title":"涉及指数函数、三角函数和双曲函数的一些新的简单不等式","authors":"Yogesh J. Bagul, C. Chesneau","doi":"10.4067/S0719-06462019000100021","DOIUrl":null,"url":null,"abstract":"The prime goal of this paper is to establish sharp lower and upper bounds for useful functions such as the exponential functions, with a focus on exp(−x2), the trigonometric functions (cosine and sine) and the hyperbolic functions (cosine and sine). The bounds obtained for hyperbolic cosine are very sharp. New proofs, refinements as well as new results are offered. Some graphical and numerical results illustrate the findings.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions\",\"authors\":\"Yogesh J. Bagul, C. Chesneau\",\"doi\":\"10.4067/S0719-06462019000100021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prime goal of this paper is to establish sharp lower and upper bounds for useful functions such as the exponential functions, with a focus on exp(−x2), the trigonometric functions (cosine and sine) and the hyperbolic functions (cosine and sine). The bounds obtained for hyperbolic cosine are very sharp. New proofs, refinements as well as new results are offered. Some graphical and numerical results illustrate the findings.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/S0719-06462019000100021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/S0719-06462019000100021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions
The prime goal of this paper is to establish sharp lower and upper bounds for useful functions such as the exponential functions, with a focus on exp(−x2), the trigonometric functions (cosine and sine) and the hyperbolic functions (cosine and sine). The bounds obtained for hyperbolic cosine are very sharp. New proofs, refinements as well as new results are offered. Some graphical and numerical results illustrate the findings.