金属增材制造中工艺-结构-性能-性能关系的计算建模:综述

IF 16.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. M. Hashemi, S. Parvizi, Haniyeh Baghbanijavid, Alvin T. L. Tan, M. Nematollahi, A. Ramazani, N. Fang, M. Elahinia
{"title":"金属增材制造中工艺-结构-性能-性能关系的计算建模:综述","authors":"S. M. Hashemi, S. Parvizi, Haniyeh Baghbanijavid, Alvin T. L. Tan, M. Nematollahi, A. Ramazani, N. Fang, M. Elahinia","doi":"10.1080/09506608.2020.1868889","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the current review, an exceptional view on the multi-scale integrated computational modelling and data-driven methods in the Additive manufacturing (AM) of metallic materials in the framework of integrated computational materials engineering (ICME) is discussed. In the first part of the review, process simulation (P-S linkage), structure modelling (S-P linkage), property simulation (S-P linkage), and integrated modelling (PSP and PSPP linkages) are elaborated considering different physical phenomena (multi-physics) in AM and at micro/meso/macro scales (multi-scale modelling). The second part provides an extensive discussion of a data-driven framework, which involves extracting existing data from databases and texts, data pre-processing, high throughput screening, and, therefore, database construction. A data-driven workflow that integrates statistical methods, including ML, artificial intelligence (AI), and neural network (NN) models, has great potential for completing PSPP linkages. This review paper provides an insight for both academic and industrial researchers, working on the AM of metallic materials.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"67 1","pages":"1 - 46"},"PeriodicalIF":16.8000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2020.1868889","citationCount":"41","resultStr":"{\"title\":\"Computational modelling of process–structure–property–performance relationships in metal additive manufacturing: a review\",\"authors\":\"S. M. Hashemi, S. Parvizi, Haniyeh Baghbanijavid, Alvin T. L. Tan, M. Nematollahi, A. Ramazani, N. Fang, M. Elahinia\",\"doi\":\"10.1080/09506608.2020.1868889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the current review, an exceptional view on the multi-scale integrated computational modelling and data-driven methods in the Additive manufacturing (AM) of metallic materials in the framework of integrated computational materials engineering (ICME) is discussed. In the first part of the review, process simulation (P-S linkage), structure modelling (S-P linkage), property simulation (S-P linkage), and integrated modelling (PSP and PSPP linkages) are elaborated considering different physical phenomena (multi-physics) in AM and at micro/meso/macro scales (multi-scale modelling). The second part provides an extensive discussion of a data-driven framework, which involves extracting existing data from databases and texts, data pre-processing, high throughput screening, and, therefore, database construction. A data-driven workflow that integrates statistical methods, including ML, artificial intelligence (AI), and neural network (NN) models, has great potential for completing PSPP linkages. This review paper provides an insight for both academic and industrial researchers, working on the AM of metallic materials.\",\"PeriodicalId\":14427,\"journal\":{\"name\":\"International Materials Reviews\",\"volume\":\"67 1\",\"pages\":\"1 - 46\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09506608.2020.1868889\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Materials Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09506608.2020.1868889\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2020.1868889","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 41

摘要

摘要在当前的综述中,讨论了在集成计算材料工程(ICME)框架下,金属材料增材制造(AM)中的多尺度集成计算建模和数据驱动方法的特殊观点。在综述的第一部分中,考虑到AM和微/中/宏观尺度上的不同物理现象(多物理)(多尺度建模),详细阐述了过程模拟(P-S连杆)、结构建模(S-P连杆)、性能模拟(S-P杆)和集成建模(PSP和PSPP连杆)。第二部分对数据驱动框架进行了广泛的讨论,包括从数据库和文本中提取现有数据、数据预处理、高通量筛选,以及数据库构建。数据驱动的工作流集成了统计方法,包括ML、人工智能(AI)和神经网络(NN)模型,在完成PSPP链接方面具有巨大潜力。这篇综述论文为研究金属材料AM的学术和工业研究人员提供了一个见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational modelling of process–structure–property–performance relationships in metal additive manufacturing: a review
ABSTRACT In the current review, an exceptional view on the multi-scale integrated computational modelling and data-driven methods in the Additive manufacturing (AM) of metallic materials in the framework of integrated computational materials engineering (ICME) is discussed. In the first part of the review, process simulation (P-S linkage), structure modelling (S-P linkage), property simulation (S-P linkage), and integrated modelling (PSP and PSPP linkages) are elaborated considering different physical phenomena (multi-physics) in AM and at micro/meso/macro scales (multi-scale modelling). The second part provides an extensive discussion of a data-driven framework, which involves extracting existing data from databases and texts, data pre-processing, high throughput screening, and, therefore, database construction. A data-driven workflow that integrates statistical methods, including ML, artificial intelligence (AI), and neural network (NN) models, has great potential for completing PSPP linkages. This review paper provides an insight for both academic and industrial researchers, working on the AM of metallic materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Materials Reviews
International Materials Reviews 工程技术-材料科学:综合
CiteScore
28.50
自引率
0.00%
发文量
21
审稿时长
6 months
期刊介绍: International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content. Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information. Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信