M. Usman, Azmi Prasasti, Sovia Islamiah, A. N. Firdaus, Ayu Wanda Marita, Syamsiyatul Fajriyah, A. Noviyanti, D. Eddy
求助PDF
{"title":"纳米二氧化钛降解环丙沙星的条件、毒性及降解途径的优化","authors":"M. Usman, Azmi Prasasti, Sovia Islamiah, A. N. Firdaus, Ayu Wanda Marita, Syamsiyatul Fajriyah, A. Noviyanti, D. Eddy","doi":"10.9767/bcrec.16.4.11355.752-762","DOIUrl":null,"url":null,"abstract":"The popular use of ciprofloxacin is often irrational, so it causes environmental pollution such as resistance. The solution to overcome environmental pollution due to ciprofloxacin is degradation by using TiO2 nanoparticles. TiO2 nanoparticles performance is influenced by environment such as light source, pH solvent, duration of lighting and TiO2 nanoparticles mass. The residual levels determination of ciprofloxacin was carried out by using a UV-Vis spectrophotometer. Toxicity test of ciprofloxacin degradation products with TiO2 nanoparticles used Escherichia coli bacteria. Liquid Chromatography Mass Spectrometry (LCMS) was used to determine the type of ciprofloxacin degradation product with TiO2 nanoparticles. The optimum condition for the ciprofloxacin degradation with TiO2 nanoparticles is lighting for 5 hours by using a white mercury UV lamp and 50 mg TiO2 nanoparticles with pH solvent of 5.5. The toxicity of ciprofloxacin degradation product with TiO2 nanoparticles was low. The smallest degradation product identified with m/z was p-fluoraniline (m/z 111). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Degradation of Ciprofloxacin by Titanium Dioxide (TiO2) Nanoparticles: Optimization of Conditions, Toxicity, and Degradation Pathway\",\"authors\":\"M. Usman, Azmi Prasasti, Sovia Islamiah, A. N. Firdaus, Ayu Wanda Marita, Syamsiyatul Fajriyah, A. Noviyanti, D. Eddy\",\"doi\":\"10.9767/bcrec.16.4.11355.752-762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popular use of ciprofloxacin is often irrational, so it causes environmental pollution such as resistance. The solution to overcome environmental pollution due to ciprofloxacin is degradation by using TiO2 nanoparticles. TiO2 nanoparticles performance is influenced by environment such as light source, pH solvent, duration of lighting and TiO2 nanoparticles mass. The residual levels determination of ciprofloxacin was carried out by using a UV-Vis spectrophotometer. Toxicity test of ciprofloxacin degradation products with TiO2 nanoparticles used Escherichia coli bacteria. Liquid Chromatography Mass Spectrometry (LCMS) was used to determine the type of ciprofloxacin degradation product with TiO2 nanoparticles. The optimum condition for the ciprofloxacin degradation with TiO2 nanoparticles is lighting for 5 hours by using a white mercury UV lamp and 50 mg TiO2 nanoparticles with pH solvent of 5.5. The toxicity of ciprofloxacin degradation product with TiO2 nanoparticles was low. The smallest degradation product identified with m/z was p-fluoraniline (m/z 111). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). \",\"PeriodicalId\":46276,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering and Catalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering and Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/bcrec.16.4.11355.752-762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering and Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.16.4.11355.752-762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 3
引用
批量引用