{"title":"椭圆双洗牌、Grothendieck–Teichmüller与模具理论","authors":"Leila Schneps","doi":"10.1007/s40316-020-00141-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we define an <i>elliptic double shuffle Lie algebra</i> <span>\\(\\scriptstyle {{\\mathfrak {ds}}_{ell}}\\)</span> that generalizes the well-known <i>double shuffle Lie algebra</i> <span>\\(\\scriptstyle {{\\mathfrak {ds}}}\\)</span> to the elliptic situation. The double shuffle, or dimorphic, relations satisfied by elements of the Lie algebra <span>\\(\\scriptstyle {{\\mathfrak {ds}}}\\)</span> express two families of algebraic relations between multiple zeta values that conjecturally generate all relations. In analogy with this, elements of the elliptic double shuffle Lie algebra <span>\\(\\scriptstyle {{\\mathfrak {ds}}_{ell}}\\)</span> are Lie polynomials having a dimorphic property called <span>\\(\\scriptstyle {\\Delta }\\)</span>-bialternality that conjecturally describes the (dual of the) set of algebraic relations between <i>elliptic multiple zeta values</i>, which arise as coefficients of a certain elliptic generating series (constructed explicitly in Lochak et al.\n[15]) in On elliptic multiple zeta values 2016, in preparation) and closely related to the elliptic associator defined by Enriquez\n[10]. We show that one of Ecalle’s major results in mould theory can be reinterpreted as yielding the existence of an injective Lie algebra morphism <span>\\(\\scriptstyle {{\\mathfrak {ds}}\\rightarrow {\\mathfrak {ds}}_{ell}}\\)</span>. Our main result is the compatibility of this map with the tangential-base-point section <span>\\(\\scriptstyle {\\mathrm{Lie}\\,\\pi _1(MTM)\\rightarrow \\mathrm{Lie}\\,\\pi _1(MEM)}\\)</span> constructed by Hain and Matsumoto\n[14] and with the section <span>\\(\\scriptstyle {{\\mathfrak {grt}}\\rightarrow {\\mathfrak {grt}}_{ell}}\\)</span> mapping the Grothendieck–Teichmüller Lie algebra <span>\\(\\scriptstyle {{\\mathfrak {grt}}}\\)</span> into the elliptic Grothendieck–Teichmüller Lie algebra <span>\\(\\scriptstyle {{\\mathfrak {grt}}_{ell}}\\)</span> constructed by Enriquez. This compatibility is expressed by the commutativity of the following diagram (excluding the dotted arrow, which is conjectural). </p><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"44 2","pages":"261 - 289"},"PeriodicalIF":0.5000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00141-7","citationCount":"1","resultStr":"{\"title\":\"Elliptic double shuffle, Grothendieck–Teichmüller and mould theory\",\"authors\":\"Leila Schneps\",\"doi\":\"10.1007/s40316-020-00141-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article we define an <i>elliptic double shuffle Lie algebra</i> <span>\\\\(\\\\scriptstyle {{\\\\mathfrak {ds}}_{ell}}\\\\)</span> that generalizes the well-known <i>double shuffle Lie algebra</i> <span>\\\\(\\\\scriptstyle {{\\\\mathfrak {ds}}}\\\\)</span> to the elliptic situation. The double shuffle, or dimorphic, relations satisfied by elements of the Lie algebra <span>\\\\(\\\\scriptstyle {{\\\\mathfrak {ds}}}\\\\)</span> express two families of algebraic relations between multiple zeta values that conjecturally generate all relations. In analogy with this, elements of the elliptic double shuffle Lie algebra <span>\\\\(\\\\scriptstyle {{\\\\mathfrak {ds}}_{ell}}\\\\)</span> are Lie polynomials having a dimorphic property called <span>\\\\(\\\\scriptstyle {\\\\Delta }\\\\)</span>-bialternality that conjecturally describes the (dual of the) set of algebraic relations between <i>elliptic multiple zeta values</i>, which arise as coefficients of a certain elliptic generating series (constructed explicitly in Lochak et al.\\n[15]) in On elliptic multiple zeta values 2016, in preparation) and closely related to the elliptic associator defined by Enriquez\\n[10]. We show that one of Ecalle’s major results in mould theory can be reinterpreted as yielding the existence of an injective Lie algebra morphism <span>\\\\(\\\\scriptstyle {{\\\\mathfrak {ds}}\\\\rightarrow {\\\\mathfrak {ds}}_{ell}}\\\\)</span>. Our main result is the compatibility of this map with the tangential-base-point section <span>\\\\(\\\\scriptstyle {\\\\mathrm{Lie}\\\\,\\\\pi _1(MTM)\\\\rightarrow \\\\mathrm{Lie}\\\\,\\\\pi _1(MEM)}\\\\)</span> constructed by Hain and Matsumoto\\n[14] and with the section <span>\\\\(\\\\scriptstyle {{\\\\mathfrak {grt}}\\\\rightarrow {\\\\mathfrak {grt}}_{ell}}\\\\)</span> mapping the Grothendieck–Teichmüller Lie algebra <span>\\\\(\\\\scriptstyle {{\\\\mathfrak {grt}}}\\\\)</span> into the elliptic Grothendieck–Teichmüller Lie algebra <span>\\\\(\\\\scriptstyle {{\\\\mathfrak {grt}}_{ell}}\\\\)</span> constructed by Enriquez. This compatibility is expressed by the commutativity of the following diagram (excluding the dotted arrow, which is conjectural). </p><div><figure><div><div><picture><img></picture></div></div></figure></div></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"44 2\",\"pages\":\"261 - 289\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40316-020-00141-7\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-020-00141-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-020-00141-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Elliptic double shuffle, Grothendieck–Teichmüller and mould theory
In this article we define an elliptic double shuffle Lie algebra\(\scriptstyle {{\mathfrak {ds}}_{ell}}\) that generalizes the well-known double shuffle Lie algebra\(\scriptstyle {{\mathfrak {ds}}}\) to the elliptic situation. The double shuffle, or dimorphic, relations satisfied by elements of the Lie algebra \(\scriptstyle {{\mathfrak {ds}}}\) express two families of algebraic relations between multiple zeta values that conjecturally generate all relations. In analogy with this, elements of the elliptic double shuffle Lie algebra \(\scriptstyle {{\mathfrak {ds}}_{ell}}\) are Lie polynomials having a dimorphic property called \(\scriptstyle {\Delta }\)-bialternality that conjecturally describes the (dual of the) set of algebraic relations between elliptic multiple zeta values, which arise as coefficients of a certain elliptic generating series (constructed explicitly in Lochak et al.
[15]) in On elliptic multiple zeta values 2016, in preparation) and closely related to the elliptic associator defined by Enriquez
[10]. We show that one of Ecalle’s major results in mould theory can be reinterpreted as yielding the existence of an injective Lie algebra morphism \(\scriptstyle {{\mathfrak {ds}}\rightarrow {\mathfrak {ds}}_{ell}}\). Our main result is the compatibility of this map with the tangential-base-point section \(\scriptstyle {\mathrm{Lie}\,\pi _1(MTM)\rightarrow \mathrm{Lie}\,\pi _1(MEM)}\) constructed by Hain and Matsumoto
[14] and with the section \(\scriptstyle {{\mathfrak {grt}}\rightarrow {\mathfrak {grt}}_{ell}}\) mapping the Grothendieck–Teichmüller Lie algebra \(\scriptstyle {{\mathfrak {grt}}}\) into the elliptic Grothendieck–Teichmüller Lie algebra \(\scriptstyle {{\mathfrak {grt}}_{ell}}\) constructed by Enriquez. This compatibility is expressed by the commutativity of the following diagram (excluding the dotted arrow, which is conjectural).
期刊介绍:
The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science.
Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages.
History:
The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique.
On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues.
Histoire:
La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.