在图中限制罗马的增援人数

Q3 Mathematics
S. Kosari, S. M. Sheikholeslami, M. Chellali, M. Hajjari
{"title":"在图中限制罗马的增援人数","authors":"S. Kosari, S. M. Sheikholeslami, M. Chellali, M. Hajjari","doi":"10.15826/umj.2022.2.007","DOIUrl":null,"url":null,"abstract":"A restrained Roman dominating function (RRD-function) on a graph \\(G=(V,E)\\) is a function \\(f\\) from \\(V\\) into \\(\\{0,1,2\\}\\) satisfying: (i)  every vertex \\(u\\) with \\(f(u)=0\\) is adjacent to a vertex \\(v\\) with \\(f(v)=2\\); (ii) the subgraph induced by the vertices assigned 0 under \\(f\\) has no isolated vertices. The weight of an RRD-function is the sum of its function value over the whole set of vertices, and the restrained Roman domination number is the minimum weight of an RRD-function on \\(G.\\) In this paper, we begin the study of the restrained Roman reinforcement number \\(r_{rR}(G)\\) of a graph \\(G\\) defined as the cardinality of a smallest set of edges that we must add to the graph to decrease its restrained Roman domination number. We first show that the decision problem associated with the restrained Roman reinforcement problem is NP-hard. Then several properties as well as some sharp bounds of the restrained Roman reinforcement number are presented. In particular it is established that \\(r_{rR}(T)=1\\) for every tree \\(T\\) of order at least three.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RESTRAINED ROMAN REINFORCEMENT NUMBER IN GRAPHS\",\"authors\":\"S. Kosari, S. M. Sheikholeslami, M. Chellali, M. Hajjari\",\"doi\":\"10.15826/umj.2022.2.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A restrained Roman dominating function (RRD-function) on a graph \\\\(G=(V,E)\\\\) is a function \\\\(f\\\\) from \\\\(V\\\\) into \\\\(\\\\{0,1,2\\\\}\\\\) satisfying: (i)  every vertex \\\\(u\\\\) with \\\\(f(u)=0\\\\) is adjacent to a vertex \\\\(v\\\\) with \\\\(f(v)=2\\\\); (ii) the subgraph induced by the vertices assigned 0 under \\\\(f\\\\) has no isolated vertices. The weight of an RRD-function is the sum of its function value over the whole set of vertices, and the restrained Roman domination number is the minimum weight of an RRD-function on \\\\(G.\\\\) In this paper, we begin the study of the restrained Roman reinforcement number \\\\(r_{rR}(G)\\\\) of a graph \\\\(G\\\\) defined as the cardinality of a smallest set of edges that we must add to the graph to decrease its restrained Roman domination number. We first show that the decision problem associated with the restrained Roman reinforcement problem is NP-hard. Then several properties as well as some sharp bounds of the restrained Roman reinforcement number are presented. In particular it is established that \\\\(r_{rR}(T)=1\\\\) for every tree \\\\(T\\\\) of order at least three.\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/umj.2022.2.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2022.2.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

图\(G=(V,E)\)上的约束罗马支配函数(RRD-function)是一个从\(V\)到\(\{0,1,2\}\)的函数\(f\),满足:(i)每个顶点\(u\)与\(f(u)=0\)相邻的顶点\(v\)与\(f(v)=2\)相邻;(ii)在\(f\)下由赋值为0的顶点诱导的子图不存在孤立的顶点。rrd函数的权值是它的函数值在整个顶点集上的和,而约束罗马统治数是rrd函数在\(G.\)上的最小权值。本文开始研究图\(G\)的约束罗马加强数\(r_{rR}(G)\),其定义为我们必须添加到图中以减少其约束罗马统治数的最小边集的基数。我们首先证明了与约束罗马强化问题相关的决策问题是np困难的。然后给出了约束罗马钢筋数的几个性质和一些明确的界限。特别地,我们确定\(r_{rR}(T)=1\)对于每棵至少为3阶的树\(T\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RESTRAINED ROMAN REINFORCEMENT NUMBER IN GRAPHS
A restrained Roman dominating function (RRD-function) on a graph \(G=(V,E)\) is a function \(f\) from \(V\) into \(\{0,1,2\}\) satisfying: (i)  every vertex \(u\) with \(f(u)=0\) is adjacent to a vertex \(v\) with \(f(v)=2\); (ii) the subgraph induced by the vertices assigned 0 under \(f\) has no isolated vertices. The weight of an RRD-function is the sum of its function value over the whole set of vertices, and the restrained Roman domination number is the minimum weight of an RRD-function on \(G.\) In this paper, we begin the study of the restrained Roman reinforcement number \(r_{rR}(G)\) of a graph \(G\) defined as the cardinality of a smallest set of edges that we must add to the graph to decrease its restrained Roman domination number. We first show that the decision problem associated with the restrained Roman reinforcement problem is NP-hard. Then several properties as well as some sharp bounds of the restrained Roman reinforcement number are presented. In particular it is established that \(r_{rR}(T)=1\) for every tree \(T\) of order at least three.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信