等变K-理论的诱导性、环积和群的回调

Q4 Mathematics
J. Rodríguez, Mario Velásquez
{"title":"等变K-理论的诱导性、环积和群的回调","authors":"J. Rodríguez, Mario Velásquez","doi":"10.15446/recolma.v56n1.105613","DOIUrl":null,"url":null,"abstract":"Let G be a finite group and let X be a compact G-space. In this note we study the (Z+ × Z/2Z)-graded algebra \nFqG (X) = ⊕n ≤ 0 qn · KG∫Gn(Xn) ⊗ C, \ndefined in terms of equivariant K-theory with respect to wreath products as a symmetric algebra, we review some properties of FqG (X) proved by Segal and Wang. We prove a Kunneth type formula for this graded algebras, more specifically, let H be another finite group and let Y be a compact H-space, we give a decomposition of FqG × H (X × Y) in terms of FqG (X) and FqH (Y). For this, we need to study the representation theory of pullbacks of groups. We discuss also some applications of the above result to equivariant connective K-homology.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Induced character in equivariant K-theory, wreath products and pullback of groups\",\"authors\":\"J. Rodríguez, Mario Velásquez\",\"doi\":\"10.15446/recolma.v56n1.105613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a finite group and let X be a compact G-space. In this note we study the (Z+ × Z/2Z)-graded algebra \\nFqG (X) = ⊕n ≤ 0 qn · KG∫Gn(Xn) ⊗ C, \\ndefined in terms of equivariant K-theory with respect to wreath products as a symmetric algebra, we review some properties of FqG (X) proved by Segal and Wang. We prove a Kunneth type formula for this graded algebras, more specifically, let H be another finite group and let Y be a compact H-space, we give a decomposition of FqG × H (X × Y) in terms of FqG (X) and FqH (Y). For this, we need to study the representation theory of pullbacks of groups. We discuss also some applications of the above result to equivariant connective K-homology.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v56n1.105613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v56n1.105613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

设G是一个有限群,设X是一个紧致G空间。本文研究了用等变K-理论定义的(Z+×Z/2Z)-分次代数FqG(X)=Şn≤0qn·KGŞGn(Xn)⊗C,并讨论了Segal和Wang证明的FqG的一些性质。我们证明了这个分次代数的一个Kunneth型公式,更具体地说,设H是另一个有限群,设Y是紧H-空间,我们给出了FqG×H(X×Y)在FqG(X)和FqH(Y)方面的分解。为此,我们需要研究群体回调的表征理论。我们还讨论了上述结果在等变连接K-同源性中的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Induced character in equivariant K-theory, wreath products and pullback of groups
Let G be a finite group and let X be a compact G-space. In this note we study the (Z+ × Z/2Z)-graded algebra FqG (X) = ⊕n ≤ 0 qn · KG∫Gn(Xn) ⊗ C, defined in terms of equivariant K-theory with respect to wreath products as a symmetric algebra, we review some properties of FqG (X) proved by Segal and Wang. We prove a Kunneth type formula for this graded algebras, more specifically, let H be another finite group and let Y be a compact H-space, we give a decomposition of FqG × H (X × Y) in terms of FqG (X) and FqH (Y). For this, we need to study the representation theory of pullbacks of groups. We discuss also some applications of the above result to equivariant connective K-homology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信