关于Brauer群一致有界性的一个注记

IF 1.2 1区 数学 Q1 MATHEMATICS
A. Cadoret, Franccois Charles
{"title":"关于Brauer群一致有界性的一个注记","authors":"A. Cadoret, Franccois Charles","doi":"10.14231/ag-2020-017","DOIUrl":null,"url":null,"abstract":"The Tate conjecture for divisors on varieties over number fields is equivalent to finiteness of $\\ell$-primary torsion in the Brauer group. We show that this finiteness is actually uniform in one-dimensional families for varieties that satisfy the Tate conjecture for divisors -- e.g. abelian varieties and $K3$ surfaces.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A remark on uniform boundedness for Brauer groups\",\"authors\":\"A. Cadoret, Franccois Charles\",\"doi\":\"10.14231/ag-2020-017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Tate conjecture for divisors on varieties over number fields is equivalent to finiteness of $\\\\ell$-primary torsion in the Brauer group. We show that this finiteness is actually uniform in one-dimensional families for varieties that satisfy the Tate conjecture for divisors -- e.g. abelian varieties and $K3$ surfaces.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2020-017\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2020-017","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

数域上变种上除数的Tate猜想等价于Brauer群中$\ell$-初扭的有限性。我们证明了这种有限性在满足除数的泰特猜想的变种的一维族中实际上是一致的,例如阿贝尔变种和$K3$曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A remark on uniform boundedness for Brauer groups
The Tate conjecture for divisors on varieties over number fields is equivalent to finiteness of $\ell$-primary torsion in the Brauer group. We show that this finiteness is actually uniform in one-dimensional families for varieties that satisfy the Tate conjecture for divisors -- e.g. abelian varieties and $K3$ surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Geometry
Algebraic Geometry Mathematics-Geometry and Topology
CiteScore
2.40
自引率
0.00%
发文量
25
审稿时长
52 weeks
期刊介绍: This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信