{"title":"关于Brauer群一致有界性的一个注记","authors":"A. Cadoret, Franccois Charles","doi":"10.14231/ag-2020-017","DOIUrl":null,"url":null,"abstract":"The Tate conjecture for divisors on varieties over number fields is equivalent to finiteness of $\\ell$-primary torsion in the Brauer group. We show that this finiteness is actually uniform in one-dimensional families for varieties that satisfy the Tate conjecture for divisors -- e.g. abelian varieties and $K3$ surfaces.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A remark on uniform boundedness for Brauer groups\",\"authors\":\"A. Cadoret, Franccois Charles\",\"doi\":\"10.14231/ag-2020-017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Tate conjecture for divisors on varieties over number fields is equivalent to finiteness of $\\\\ell$-primary torsion in the Brauer group. We show that this finiteness is actually uniform in one-dimensional families for varieties that satisfy the Tate conjecture for divisors -- e.g. abelian varieties and $K3$ surfaces.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2020-017\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2020-017","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Tate conjecture for divisors on varieties over number fields is equivalent to finiteness of $\ell$-primary torsion in the Brauer group. We show that this finiteness is actually uniform in one-dimensional families for varieties that satisfy the Tate conjecture for divisors -- e.g. abelian varieties and $K3$ surfaces.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.