平坦概率:sir-poisson模型的情况

Q4 Computer Science
J. Montoya, Gudelia Figueroa-Preciado, Mayra R. Tocto-Erazo
{"title":"平坦概率:sir-poisson模型的情况","authors":"J. Montoya, Gudelia Figueroa-Preciado, Mayra R. Tocto-Erazo","doi":"10.15446/rev.fac.cienc.v11n2.100986","DOIUrl":null,"url":null,"abstract":"Systems of differential equations are used as the basis to define mathematical structures for moments, like the mean and variance, of random variables probability distributions.  Nevertheless, the integration of a deterministic model and a probabilistic one, with the aim of describing a random phenomenon, and take advantage of the observed data for making inferences on certain population dynamic characteristics, can lead to parameter identifiability problems. Furthermore, approaches to deal with those problems are usually inappropriate. In this paper, the shape of the likelihood function of a SIR-Poisson model is used to describe the relationship between flat likelihoods and the identifiability parameter problem.   In particular, we show how a flattened shape for the profile likelihood of the basic reproductive number R0, arises as the observed sample (over time) becomes smaller, causing ambiguity regarding the shape of the average model behavior.  We conducted some simulation studies to analyze the flatness severity of the R0 likelihood, and the coverage frequency of the likelihood-confidence regions for the model parameters. Finally, we describe some approaches to deal the practical identifiability problem, showing the impact those can have on inferences.  We believe this work can help to raise awareness on the way statistical inferences can be affected by a priori parameter assumptions and the underlying relationship between them, as well as by model reparameterizations and incorrect model assumptions.","PeriodicalId":31950,"journal":{"name":"Revista de la Facultad de Ciencias","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FLAT LIKELIHOODS: SIR-POISSON MODEL CASE\",\"authors\":\"J. Montoya, Gudelia Figueroa-Preciado, Mayra R. Tocto-Erazo\",\"doi\":\"10.15446/rev.fac.cienc.v11n2.100986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systems of differential equations are used as the basis to define mathematical structures for moments, like the mean and variance, of random variables probability distributions.  Nevertheless, the integration of a deterministic model and a probabilistic one, with the aim of describing a random phenomenon, and take advantage of the observed data for making inferences on certain population dynamic characteristics, can lead to parameter identifiability problems. Furthermore, approaches to deal with those problems are usually inappropriate. In this paper, the shape of the likelihood function of a SIR-Poisson model is used to describe the relationship between flat likelihoods and the identifiability parameter problem.   In particular, we show how a flattened shape for the profile likelihood of the basic reproductive number R0, arises as the observed sample (over time) becomes smaller, causing ambiguity regarding the shape of the average model behavior.  We conducted some simulation studies to analyze the flatness severity of the R0 likelihood, and the coverage frequency of the likelihood-confidence regions for the model parameters. Finally, we describe some approaches to deal the practical identifiability problem, showing the impact those can have on inferences.  We believe this work can help to raise awareness on the way statistical inferences can be affected by a priori parameter assumptions and the underlying relationship between them, as well as by model reparameterizations and incorrect model assumptions.\",\"PeriodicalId\":31950,\"journal\":{\"name\":\"Revista de la Facultad de Ciencias\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de la Facultad de Ciencias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/rev.fac.cienc.v11n2.100986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Facultad de Ciencias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/rev.fac.cienc.v11n2.100986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

微分方程组被用作定义随机变量概率分布的矩(如均值和方差)的数学结构的基础。然而,为了描述随机现象,将确定性模型和概率模型相结合,并利用观测数据对某些种群动态特征进行推断,可能会导致参数可识别性问题。此外,处理这些问题的方法通常是不恰当的。本文利用SIR-Pisson模型的似然函数的形状来描述平坦似然与可识别性参数问题之间的关系。特别地,我们展示了当观察到的样本(随着时间的推移)变得更小时,基本繁殖数R0的轮廓可能性的平坦形状是如何产生的,从而导致关于平均模型行为的形状的模糊性。我们进行了一些模拟研究,以分析R0似然的平坦性严重性,以及模型参数的似然置信区的覆盖频率。最后,我们描述了一些处理实际可识别性问题的方法,展示了这些方法对推理的影响。我们相信,这项工作有助于提高人们对统计推断如何受到先验参数假设及其之间的潜在关系的影响,以及模型重新参数化和不正确的模型假设的影响的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FLAT LIKELIHOODS: SIR-POISSON MODEL CASE
Systems of differential equations are used as the basis to define mathematical structures for moments, like the mean and variance, of random variables probability distributions.  Nevertheless, the integration of a deterministic model and a probabilistic one, with the aim of describing a random phenomenon, and take advantage of the observed data for making inferences on certain population dynamic characteristics, can lead to parameter identifiability problems. Furthermore, approaches to deal with those problems are usually inappropriate. In this paper, the shape of the likelihood function of a SIR-Poisson model is used to describe the relationship between flat likelihoods and the identifiability parameter problem.   In particular, we show how a flattened shape for the profile likelihood of the basic reproductive number R0, arises as the observed sample (over time) becomes smaller, causing ambiguity regarding the shape of the average model behavior.  We conducted some simulation studies to analyze the flatness severity of the R0 likelihood, and the coverage frequency of the likelihood-confidence regions for the model parameters. Finally, we describe some approaches to deal the practical identifiability problem, showing the impact those can have on inferences.  We believe this work can help to raise awareness on the way statistical inferences can be affected by a priori parameter assumptions and the underlying relationship between them, as well as by model reparameterizations and incorrect model assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
6
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信