R. Coscarelli, T. Caloiero, Eugenio Filice, Loredana Marsico, Roberta Rotundo
{"title":"卡拉布里亚地区(意大利南部)的气象干旱特征","authors":"R. Coscarelli, T. Caloiero, Eugenio Filice, Loredana Marsico, Roberta Rotundo","doi":"10.3390/cli11080160","DOIUrl":null,"url":null,"abstract":"Due to the important role of water resources in the growth of the world’s economy, drought causes global concern for its severe worldwide implications on different sectors, such as biodiversity, farming, public water supply, energy, tourism, human health, and ecosystem services. In particular, drought events can have strong environmental and socioeconomic impacts in countries depending on rain-fed agriculture such as the ones in the Mediterranean region, which, due to a detected increase in warming and precipitation decrease, is considered a climate change hotspot. In this context, in this paper, meteorological drought in the Calabria region (southern Italy) has been characterized considering the Standardized Precipitation Index (SPI) evaluated at different timescales. First, the temporal distribution of the most severe dry episodes has been evaluated. Then, a trend analysis has been conducted considering the different seasons, the wet (autumn and winter) and dry (spring and summer) periods, and the annual scale. Finally, the relationship between drought and some teleconnection patterns (the North Atlantic Oscillation—NAO, the El Niño–Southern Oscillation—ENSO, and the Mediterranean Oscillation—MO) has been investigated. Results show that the majority of the severe/extreme drought events have been observed between 1985 and 2008. Moreover, a decrease in SPI values has been observed in winter and spring, in both the wet and dry periods, and upon the annual scale considering the 12-month SPI and the 24-month SPI. Finally, a link between the drought episodes in the Calabria region and the NAO phases and the MO has been identified. Since drought episodes can severely impact water resources and their uses, the findings presented in this work can be useful to plan and manage the water supply for household, farming, and industrial uses.","PeriodicalId":37615,"journal":{"name":"Climate","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meteorological Drought Characterization in the Calabria Region (Southern Italy)\",\"authors\":\"R. Coscarelli, T. Caloiero, Eugenio Filice, Loredana Marsico, Roberta Rotundo\",\"doi\":\"10.3390/cli11080160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the important role of water resources in the growth of the world’s economy, drought causes global concern for its severe worldwide implications on different sectors, such as biodiversity, farming, public water supply, energy, tourism, human health, and ecosystem services. In particular, drought events can have strong environmental and socioeconomic impacts in countries depending on rain-fed agriculture such as the ones in the Mediterranean region, which, due to a detected increase in warming and precipitation decrease, is considered a climate change hotspot. In this context, in this paper, meteorological drought in the Calabria region (southern Italy) has been characterized considering the Standardized Precipitation Index (SPI) evaluated at different timescales. First, the temporal distribution of the most severe dry episodes has been evaluated. Then, a trend analysis has been conducted considering the different seasons, the wet (autumn and winter) and dry (spring and summer) periods, and the annual scale. Finally, the relationship between drought and some teleconnection patterns (the North Atlantic Oscillation—NAO, the El Niño–Southern Oscillation—ENSO, and the Mediterranean Oscillation—MO) has been investigated. Results show that the majority of the severe/extreme drought events have been observed between 1985 and 2008. Moreover, a decrease in SPI values has been observed in winter and spring, in both the wet and dry periods, and upon the annual scale considering the 12-month SPI and the 24-month SPI. Finally, a link between the drought episodes in the Calabria region and the NAO phases and the MO has been identified. Since drought episodes can severely impact water resources and their uses, the findings presented in this work can be useful to plan and manage the water supply for household, farming, and industrial uses.\",\"PeriodicalId\":37615,\"journal\":{\"name\":\"Climate\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cli11080160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli11080160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Meteorological Drought Characterization in the Calabria Region (Southern Italy)
Due to the important role of water resources in the growth of the world’s economy, drought causes global concern for its severe worldwide implications on different sectors, such as biodiversity, farming, public water supply, energy, tourism, human health, and ecosystem services. In particular, drought events can have strong environmental and socioeconomic impacts in countries depending on rain-fed agriculture such as the ones in the Mediterranean region, which, due to a detected increase in warming and precipitation decrease, is considered a climate change hotspot. In this context, in this paper, meteorological drought in the Calabria region (southern Italy) has been characterized considering the Standardized Precipitation Index (SPI) evaluated at different timescales. First, the temporal distribution of the most severe dry episodes has been evaluated. Then, a trend analysis has been conducted considering the different seasons, the wet (autumn and winter) and dry (spring and summer) periods, and the annual scale. Finally, the relationship between drought and some teleconnection patterns (the North Atlantic Oscillation—NAO, the El Niño–Southern Oscillation—ENSO, and the Mediterranean Oscillation—MO) has been investigated. Results show that the majority of the severe/extreme drought events have been observed between 1985 and 2008. Moreover, a decrease in SPI values has been observed in winter and spring, in both the wet and dry periods, and upon the annual scale considering the 12-month SPI and the 24-month SPI. Finally, a link between the drought episodes in the Calabria region and the NAO phases and the MO has been identified. Since drought episodes can severely impact water resources and their uses, the findings presented in this work can be useful to plan and manage the water supply for household, farming, and industrial uses.
ClimateEarth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍:
Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.