{"title":"声子-蒙特卡罗模拟在声子流体动力学中的热波","authors":"Ben-Dian Nie, B. Cao","doi":"10.1080/15567265.2020.1755399","DOIUrl":null,"url":null,"abstract":"ABSTRACT Thermal wave, namely wavelike behavior of heat propagation in transient heat conduction, enjoys much attention due to the recent investigations into phonon hydrodynamics in low-dimensional materials. In this paper, an improved phonon Monte Carlo (MC) simulation algorithm is developed based on the Callaway’s dual relaxation time approximation model, which can deal with the coupling of normal and resistance scattering processes. Via the method, more thermal wave evidences are observed from the microscopic view of phonons, including overshooting and diffraction. Furthermore, the ballistic and hydrodynamic thermal waves are deeply studied. Two kinds of dissipation are found to exist in thermal waves, namely spatial dissipation and resistance dissipation. The former keeps the conservation of phonon momentum, but it lengthens the wavelength and decreases the peak temperature. The latter destroys the phonon momentum and keeps the original profile, lowering the peak temperature. Finally, phonon transport phenomena in Ziman hydrodynamic regime and diffusive regime are investigated, by introducing the scattering probability. The propagation tendency of thermal energy is found to decrease with the increasing scattering probability. The investigations into phonon hydrodynamics help to understand the heat transport characteristics and improve thermal management in low-dimensional materials.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"24 1","pages":"122 - 94"},"PeriodicalIF":2.7000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2020.1755399","citationCount":"15","resultStr":"{\"title\":\"Thermal Wave in Phonon Hydrodynamic Regime by Phonon Monte Carlo Simulations\",\"authors\":\"Ben-Dian Nie, B. Cao\",\"doi\":\"10.1080/15567265.2020.1755399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Thermal wave, namely wavelike behavior of heat propagation in transient heat conduction, enjoys much attention due to the recent investigations into phonon hydrodynamics in low-dimensional materials. In this paper, an improved phonon Monte Carlo (MC) simulation algorithm is developed based on the Callaway’s dual relaxation time approximation model, which can deal with the coupling of normal and resistance scattering processes. Via the method, more thermal wave evidences are observed from the microscopic view of phonons, including overshooting and diffraction. Furthermore, the ballistic and hydrodynamic thermal waves are deeply studied. Two kinds of dissipation are found to exist in thermal waves, namely spatial dissipation and resistance dissipation. The former keeps the conservation of phonon momentum, but it lengthens the wavelength and decreases the peak temperature. The latter destroys the phonon momentum and keeps the original profile, lowering the peak temperature. Finally, phonon transport phenomena in Ziman hydrodynamic regime and diffusive regime are investigated, by introducing the scattering probability. The propagation tendency of thermal energy is found to decrease with the increasing scattering probability. The investigations into phonon hydrodynamics help to understand the heat transport characteristics and improve thermal management in low-dimensional materials.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"24 1\",\"pages\":\"122 - 94\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15567265.2020.1755399\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2020.1755399\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2020.1755399","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Thermal Wave in Phonon Hydrodynamic Regime by Phonon Monte Carlo Simulations
ABSTRACT Thermal wave, namely wavelike behavior of heat propagation in transient heat conduction, enjoys much attention due to the recent investigations into phonon hydrodynamics in low-dimensional materials. In this paper, an improved phonon Monte Carlo (MC) simulation algorithm is developed based on the Callaway’s dual relaxation time approximation model, which can deal with the coupling of normal and resistance scattering processes. Via the method, more thermal wave evidences are observed from the microscopic view of phonons, including overshooting and diffraction. Furthermore, the ballistic and hydrodynamic thermal waves are deeply studied. Two kinds of dissipation are found to exist in thermal waves, namely spatial dissipation and resistance dissipation. The former keeps the conservation of phonon momentum, but it lengthens the wavelength and decreases the peak temperature. The latter destroys the phonon momentum and keeps the original profile, lowering the peak temperature. Finally, phonon transport phenomena in Ziman hydrodynamic regime and diffusive regime are investigated, by introducing the scattering probability. The propagation tendency of thermal energy is found to decrease with the increasing scattering probability. The investigations into phonon hydrodynamics help to understand the heat transport characteristics and improve thermal management in low-dimensional materials.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.