关于作为最小数量二次曲面交集的Severi变种

IF 0.5 Q3 MATHEMATICS
Cubo Pub Date : 2022-08-01 DOI:10.56754/0719-0646.2402.0307
Hendrik Van Maldeghem, Magali Victoor
{"title":"关于作为最小数量二次曲面交集的Severi变种","authors":"Hendrik Van Maldeghem, Magali Victoor","doi":"10.56754/0719-0646.2402.0307","DOIUrl":null,"url":null,"abstract":"Let \\({\\mathscr{V}}\\) be a variety related to the second row of the Freudenthal-Tits Magic square in \\(N\\)-dimensional projective space over an arbitrary field. We show that there exist \\(M\\leq N\\) quadrics intersecting precisely in \\({\\mathscr{V}}\\) if and only if there exists a subspace of projective dimension \\(N-M\\) in the secant variety disjoint from the Severi variety. We present some examples of such subspaces of relatively large dimension. In particular, over the real numbers we show that the Cartan variety (related to the exceptional group \\({E_6}\\)\\((\\mathbb R)\\)) is the set-theoretic intersection of 15 quadrics.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Severi varieties as intersections of a minimum number of quadrics\",\"authors\":\"Hendrik Van Maldeghem, Magali Victoor\",\"doi\":\"10.56754/0719-0646.2402.0307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\({\\\\mathscr{V}}\\\\) be a variety related to the second row of the Freudenthal-Tits Magic square in \\\\(N\\\\)-dimensional projective space over an arbitrary field. We show that there exist \\\\(M\\\\leq N\\\\) quadrics intersecting precisely in \\\\({\\\\mathscr{V}}\\\\) if and only if there exists a subspace of projective dimension \\\\(N-M\\\\) in the secant variety disjoint from the Severi variety. We present some examples of such subspaces of relatively large dimension. In particular, over the real numbers we show that the Cartan variety (related to the exceptional group \\\\({E_6}\\\\)\\\\((\\\\mathbb R)\\\\)) is the set-theoretic intersection of 15 quadrics.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56754/0719-0646.2402.0307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2402.0307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设\({\mathscr{V}})是任意域上的\(N)维投影空间中与Freudenthal Tits幻方第二行有关的一个变种。我们证明了在({\mathscr{V}})中存在精确相交的\(M\leqN\)二次曲面当且仅当在与Severi变种不相交的割线变种中存在投影维数为\(N-M\)的子空间。我们给出了一些相对大维度的子空间的例子。特别地,在实数上,我们证明了Cartan变种(与例外群\({E_6}\)\((\mathbb R)\)有关)是15个二次曲面的集合论交集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Severi varieties as intersections of a minimum number of quadrics
Let \({\mathscr{V}}\) be a variety related to the second row of the Freudenthal-Tits Magic square in \(N\)-dimensional projective space over an arbitrary field. We show that there exist \(M\leq N\) quadrics intersecting precisely in \({\mathscr{V}}\) if and only if there exists a subspace of projective dimension \(N-M\) in the secant variety disjoint from the Severi variety. We present some examples of such subspaces of relatively large dimension. In particular, over the real numbers we show that the Cartan variety (related to the exceptional group \({E_6}\)\((\mathbb R)\)) is the set-theoretic intersection of 15 quadrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信