{"title":"代数点上的多对数是线性无关的吗?","authors":"Sinnou David, Noriko Hirata-Kohno, M. Kawashima","doi":"10.2140/moscow.2020.9.389","DOIUrl":null,"url":null,"abstract":"Let $r,m$ be positive integers. Let $0\\le x <1$ be a rational number. Let $\\Phi_s(x,z)$ be the $s$-th Lerch function $\\sum_{k=0}^{\\infty}\\tfrac{z^{k+1}}{(k+x+1)^s}$ with $s=1,2,\\ldots ,r$. When $x=0$, this is the polylogarithmic function. Let $\\alpha_1,\\ldots ,\\alpha_m$ be pairwise distinct algebraic numbers with $0<|\\alpha_j|<1$ $(1 \\le j \\le m)$. In this article, we state a linear independence criterion over algebraic number fields of all the $rm+1$ numbers $:$ $\\Phi_1(x,\\alpha_1),\\Phi_2(x,\\alpha_1),\\ldots, \\Phi_r(x,\\alpha_1),\\Phi_1(x,\\alpha_2),\\Phi_2(x,\\alpha_2),\\ldots, \\Phi_r(x,\\alpha_2),\\ldots,\\Phi_1(x,\\alpha_m),\\Phi_2(x,\\alpha_m),\\ldots, \\Phi_r(x,\\alpha_m)$ and $1$. This is the first result that gives a sufficient condition for the linear independence of values of the $r$ Lerch functions $\\Phi_1(x,z),\\Phi_2(x,z),\\ldots, \\Phi_r(x,z)$ at $m$ distinct algebraic points without any assumption for $r$ and $m$, even for the case $x=0$, the polylogarithms. We give an outline of our proof and explain basic idea.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Can polylogarithms at algebraic points be linearly independent?\",\"authors\":\"Sinnou David, Noriko Hirata-Kohno, M. Kawashima\",\"doi\":\"10.2140/moscow.2020.9.389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $r,m$ be positive integers. Let $0\\\\le x <1$ be a rational number. Let $\\\\Phi_s(x,z)$ be the $s$-th Lerch function $\\\\sum_{k=0}^{\\\\infty}\\\\tfrac{z^{k+1}}{(k+x+1)^s}$ with $s=1,2,\\\\ldots ,r$. When $x=0$, this is the polylogarithmic function. Let $\\\\alpha_1,\\\\ldots ,\\\\alpha_m$ be pairwise distinct algebraic numbers with $0<|\\\\alpha_j|<1$ $(1 \\\\le j \\\\le m)$. In this article, we state a linear independence criterion over algebraic number fields of all the $rm+1$ numbers $:$ $\\\\Phi_1(x,\\\\alpha_1),\\\\Phi_2(x,\\\\alpha_1),\\\\ldots, \\\\Phi_r(x,\\\\alpha_1),\\\\Phi_1(x,\\\\alpha_2),\\\\Phi_2(x,\\\\alpha_2),\\\\ldots, \\\\Phi_r(x,\\\\alpha_2),\\\\ldots,\\\\Phi_1(x,\\\\alpha_m),\\\\Phi_2(x,\\\\alpha_m),\\\\ldots, \\\\Phi_r(x,\\\\alpha_m)$ and $1$. This is the first result that gives a sufficient condition for the linear independence of values of the $r$ Lerch functions $\\\\Phi_1(x,z),\\\\Phi_2(x,z),\\\\ldots, \\\\Phi_r(x,z)$ at $m$ distinct algebraic points without any assumption for $r$ and $m$, even for the case $x=0$, the polylogarithms. We give an outline of our proof and explain basic idea.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2020.9.389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2020.9.389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Can polylogarithms at algebraic points be linearly independent?
Let $r,m$ be positive integers. Let $0\le x <1$ be a rational number. Let $\Phi_s(x,z)$ be the $s$-th Lerch function $\sum_{k=0}^{\infty}\tfrac{z^{k+1}}{(k+x+1)^s}$ with $s=1,2,\ldots ,r$. When $x=0$, this is the polylogarithmic function. Let $\alpha_1,\ldots ,\alpha_m$ be pairwise distinct algebraic numbers with $0<|\alpha_j|<1$ $(1 \le j \le m)$. In this article, we state a linear independence criterion over algebraic number fields of all the $rm+1$ numbers $:$ $\Phi_1(x,\alpha_1),\Phi_2(x,\alpha_1),\ldots, \Phi_r(x,\alpha_1),\Phi_1(x,\alpha_2),\Phi_2(x,\alpha_2),\ldots, \Phi_r(x,\alpha_2),\ldots,\Phi_1(x,\alpha_m),\Phi_2(x,\alpha_m),\ldots, \Phi_r(x,\alpha_m)$ and $1$. This is the first result that gives a sufficient condition for the linear independence of values of the $r$ Lerch functions $\Phi_1(x,z),\Phi_2(x,z),\ldots, \Phi_r(x,z)$ at $m$ distinct algebraic points without any assumption for $r$ and $m$, even for the case $x=0$, the polylogarithms. We give an outline of our proof and explain basic idea.