${\mathbb P}^1上椭圆曲面模空间的Chow环$

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Samir Canning, Bochao Kong
{"title":"${\\mathbb P}^1上椭圆曲面模空间的Chow环$","authors":"Samir Canning, Bochao Kong","doi":"10.14231/ag-2023-016","DOIUrl":null,"url":null,"abstract":"Let $E_N$ denote the coarse moduli space of smooth elliptic surfaces over $\\mathbb{P}^1$ with fundamental invariant $N$. We compute the Chow ring $A^*(E_N)$ for $N\\geq 2$. For each $N\\geq 2$, $A^*(E_N)$ is Gorenstein with socle in codimension $16$, which is surprising in light of the fact that the dimension of $E_N$ is $10N-2$. As an application, we show that the maximal dimension of a complete subvariety of $E_N$ is $16$. When $N=2$, the corresponding elliptic surfaces are K3 surfaces polarized by a hyperbolic lattice $U$. We show that the generators for $A^*(E_2)$ are tautological classes on the moduli space $\\mathcal{F}_{U}$ of $U$-polarized K3 surfaces, which provides evidence for a conjecture of Oprea and Pandharipande on the tautological rings of moduli spaces of lattice polarized K3 surfaces.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Chow rings of moduli spaces of elliptic surfaces over ${\\\\mathbb P}^1$\",\"authors\":\"Samir Canning, Bochao Kong\",\"doi\":\"10.14231/ag-2023-016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $E_N$ denote the coarse moduli space of smooth elliptic surfaces over $\\\\mathbb{P}^1$ with fundamental invariant $N$. We compute the Chow ring $A^*(E_N)$ for $N\\\\geq 2$. For each $N\\\\geq 2$, $A^*(E_N)$ is Gorenstein with socle in codimension $16$, which is surprising in light of the fact that the dimension of $E_N$ is $10N-2$. As an application, we show that the maximal dimension of a complete subvariety of $E_N$ is $16$. When $N=2$, the corresponding elliptic surfaces are K3 surfaces polarized by a hyperbolic lattice $U$. We show that the generators for $A^*(E_2)$ are tautological classes on the moduli space $\\\\mathcal{F}_{U}$ of $U$-polarized K3 surfaces, which provides evidence for a conjecture of Oprea and Pandharipande on the tautological rings of moduli spaces of lattice polarized K3 surfaces.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2023-016\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2023-016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

设$E_N$表示具有基本不变量$N$的$\mathbb{P}^1$上光滑椭圆曲面的粗模空间。我们计算了$N\geq2$的Chow环$A^*(E_N)$。对于每个$N\geq2$,$A^*(E_N)$是余维为$16$的具有socle的Gorenstein,这是令人惊讶的,因为$E_N$的维度是$10N-2$。作为一个应用,我们证明了$E_N$的完备子变种的最大维数是$16$。当$N=2$时,对应的椭圆表面是由双曲晶格$U$偏振的K3表面。我们证明了$A^*(E_2)$的生成元是模空间$\mathcal上的重言类{F}_{U} $U$-极化K3曲面的$U,这为Oprea和Pandharipande关于晶格极化K3表面的模空间的重言论环的猜想提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Chow rings of moduli spaces of elliptic surfaces over ${\mathbb P}^1$
Let $E_N$ denote the coarse moduli space of smooth elliptic surfaces over $\mathbb{P}^1$ with fundamental invariant $N$. We compute the Chow ring $A^*(E_N)$ for $N\geq 2$. For each $N\geq 2$, $A^*(E_N)$ is Gorenstein with socle in codimension $16$, which is surprising in light of the fact that the dimension of $E_N$ is $10N-2$. As an application, we show that the maximal dimension of a complete subvariety of $E_N$ is $16$. When $N=2$, the corresponding elliptic surfaces are K3 surfaces polarized by a hyperbolic lattice $U$. We show that the generators for $A^*(E_2)$ are tautological classes on the moduli space $\mathcal{F}_{U}$ of $U$-polarized K3 surfaces, which provides evidence for a conjecture of Oprea and Pandharipande on the tautological rings of moduli spaces of lattice polarized K3 surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信