{"title":"${\\mathbb P}^1上椭圆曲面模空间的Chow环$","authors":"Samir Canning, Bochao Kong","doi":"10.14231/ag-2023-016","DOIUrl":null,"url":null,"abstract":"Let $E_N$ denote the coarse moduli space of smooth elliptic surfaces over $\\mathbb{P}^1$ with fundamental invariant $N$. We compute the Chow ring $A^*(E_N)$ for $N\\geq 2$. For each $N\\geq 2$, $A^*(E_N)$ is Gorenstein with socle in codimension $16$, which is surprising in light of the fact that the dimension of $E_N$ is $10N-2$. As an application, we show that the maximal dimension of a complete subvariety of $E_N$ is $16$. When $N=2$, the corresponding elliptic surfaces are K3 surfaces polarized by a hyperbolic lattice $U$. We show that the generators for $A^*(E_2)$ are tautological classes on the moduli space $\\mathcal{F}_{U}$ of $U$-polarized K3 surfaces, which provides evidence for a conjecture of Oprea and Pandharipande on the tautological rings of moduli spaces of lattice polarized K3 surfaces.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Chow rings of moduli spaces of elliptic surfaces over ${\\\\mathbb P}^1$\",\"authors\":\"Samir Canning, Bochao Kong\",\"doi\":\"10.14231/ag-2023-016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $E_N$ denote the coarse moduli space of smooth elliptic surfaces over $\\\\mathbb{P}^1$ with fundamental invariant $N$. We compute the Chow ring $A^*(E_N)$ for $N\\\\geq 2$. For each $N\\\\geq 2$, $A^*(E_N)$ is Gorenstein with socle in codimension $16$, which is surprising in light of the fact that the dimension of $E_N$ is $10N-2$. As an application, we show that the maximal dimension of a complete subvariety of $E_N$ is $16$. When $N=2$, the corresponding elliptic surfaces are K3 surfaces polarized by a hyperbolic lattice $U$. We show that the generators for $A^*(E_2)$ are tautological classes on the moduli space $\\\\mathcal{F}_{U}$ of $U$-polarized K3 surfaces, which provides evidence for a conjecture of Oprea and Pandharipande on the tautological rings of moduli spaces of lattice polarized K3 surfaces.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2023-016\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2023-016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Chow rings of moduli spaces of elliptic surfaces over ${\mathbb P}^1$
Let $E_N$ denote the coarse moduli space of smooth elliptic surfaces over $\mathbb{P}^1$ with fundamental invariant $N$. We compute the Chow ring $A^*(E_N)$ for $N\geq 2$. For each $N\geq 2$, $A^*(E_N)$ is Gorenstein with socle in codimension $16$, which is surprising in light of the fact that the dimension of $E_N$ is $10N-2$. As an application, we show that the maximal dimension of a complete subvariety of $E_N$ is $16$. When $N=2$, the corresponding elliptic surfaces are K3 surfaces polarized by a hyperbolic lattice $U$. We show that the generators for $A^*(E_2)$ are tautological classes on the moduli space $\mathcal{F}_{U}$ of $U$-polarized K3 surfaces, which provides evidence for a conjecture of Oprea and Pandharipande on the tautological rings of moduli spaces of lattice polarized K3 surfaces.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.