噪声新闻模型中识别方案的选择

IF 0.7 4区 经济学 Q3 ECONOMICS
J. Chan, Eric Eisenstat, G. Koop
{"title":"噪声新闻模型中识别方案的选择","authors":"J. Chan, Eric Eisenstat, G. Koop","doi":"10.1515/SNDE-2020-0016","DOIUrl":null,"url":null,"abstract":"Abstract This paper is about identifying structural shocks in noisy-news models using structural vector autoregressive moving average (SVARMA) models. We develop a new identification scheme and efficient Bayesian methods for estimating the resulting SVARMA. We discuss how our identification scheme differs from the one which is used in existing theoretical and empirical models. Our main contributions lie in the development of methods for choosing between identification schemes. We estimate specifications with up to 20 variables using US macroeconomic data. We find that our identification scheme is preferred by the data, particularly as the size of the system is increased and that noise shocks generally play a negligible role. However, small models may overstate the importance of noise shocks.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"26 1","pages":"99 - 136"},"PeriodicalIF":0.7000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/SNDE-2020-0016","citationCount":"2","resultStr":"{\"title\":\"Choosing between identification schemes in noisy-news models\",\"authors\":\"J. Chan, Eric Eisenstat, G. Koop\",\"doi\":\"10.1515/SNDE-2020-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is about identifying structural shocks in noisy-news models using structural vector autoregressive moving average (SVARMA) models. We develop a new identification scheme and efficient Bayesian methods for estimating the resulting SVARMA. We discuss how our identification scheme differs from the one which is used in existing theoretical and empirical models. Our main contributions lie in the development of methods for choosing between identification schemes. We estimate specifications with up to 20 variables using US macroeconomic data. We find that our identification scheme is preferred by the data, particularly as the size of the system is increased and that noise shocks generally play a negligible role. However, small models may overstate the importance of noise shocks.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\"26 1\",\"pages\":\"99 - 136\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/SNDE-2020-0016\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/SNDE-2020-0016\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/SNDE-2020-0016","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文使用结构向量自回归移动平均(SVARMA)模型识别噪声新闻模型中的结构冲击。我们开发了一种新的识别方案和有效的贝叶斯方法来估计由此产生的SVARMA。我们讨论了我们的识别方案与现有理论和经验模型中使用的识别方案有何不同。我们的主要贡献在于开发了在识别方案之间进行选择的方法。我们使用美国宏观经济数据估计了多达20个变量的规格。我们发现,我们的识别方案受到数据的青睐,特别是随着系统规模的增加,噪声冲击通常起到可以忽略的作用。然而,小型模型可能夸大了噪声冲击的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Choosing between identification schemes in noisy-news models
Abstract This paper is about identifying structural shocks in noisy-news models using structural vector autoregressive moving average (SVARMA) models. We develop a new identification scheme and efficient Bayesian methods for estimating the resulting SVARMA. We discuss how our identification scheme differs from the one which is used in existing theoretical and empirical models. Our main contributions lie in the development of methods for choosing between identification schemes. We estimate specifications with up to 20 variables using US macroeconomic data. We find that our identification scheme is preferred by the data, particularly as the size of the system is increased and that noise shocks generally play a negligible role. However, small models may overstate the importance of noise shocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信