{"title":"相对单子的分配律","authors":"Gabriele Lobbia","doi":"10.1007/s10485-023-09716-1","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the notion of a distributive law between a relative monad and a monad. We call this a relative distributive law and define it in any 2-category <span>\\(\\mathcal {K}\\)</span>. In order to do that, we introduce the 2-category of relative monads in a 2-category <span>\\(\\mathcal {K}\\)</span> with relative monad morphisms and relative monad transformations as 1- and 2-cells, respectively. We relate our definition to the 2-category of monads in <span>\\(\\mathcal {K}\\)</span> defined by Street. Using this perspective, we prove two Beck-type theorems regarding relative distributive laws. We also describe what does it mean to have Eilenberg–Moore and Kleisli objects in this context and give examples in the 2-category of locally small categories.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"31 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-023-09716-1.pdf","citationCount":"1","resultStr":"{\"title\":\"Distributive Laws for Relative Monads\",\"authors\":\"Gabriele Lobbia\",\"doi\":\"10.1007/s10485-023-09716-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the notion of a distributive law between a relative monad and a monad. We call this a relative distributive law and define it in any 2-category <span>\\\\(\\\\mathcal {K}\\\\)</span>. In order to do that, we introduce the 2-category of relative monads in a 2-category <span>\\\\(\\\\mathcal {K}\\\\)</span> with relative monad morphisms and relative monad transformations as 1- and 2-cells, respectively. We relate our definition to the 2-category of monads in <span>\\\\(\\\\mathcal {K}\\\\)</span> defined by Street. Using this perspective, we prove two Beck-type theorems regarding relative distributive laws. We also describe what does it mean to have Eilenberg–Moore and Kleisli objects in this context and give examples in the 2-category of locally small categories.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"31 2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-023-09716-1.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-023-09716-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-023-09716-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We introduce the notion of a distributive law between a relative monad and a monad. We call this a relative distributive law and define it in any 2-category \(\mathcal {K}\). In order to do that, we introduce the 2-category of relative monads in a 2-category \(\mathcal {K}\) with relative monad morphisms and relative monad transformations as 1- and 2-cells, respectively. We relate our definition to the 2-category of monads in \(\mathcal {K}\) defined by Street. Using this perspective, we prove two Beck-type theorems regarding relative distributive laws. We also describe what does it mean to have Eilenberg–Moore and Kleisli objects in this context and give examples in the 2-category of locally small categories.
期刊介绍:
Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant.
Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.