Mustapha Jamma, A. Bennassar, M. Akherraz, M. Barara
{"title":"基于智能方法的三相PWM AC/DC变换器直接功率控制,采用滑模控制器进行直流母线稳压","authors":"Mustapha Jamma, A. Bennassar, M. Akherraz, M. Barara","doi":"10.1504/ijpec.2019.10023890","DOIUrl":null,"url":null,"abstract":"This research aims to present a novel direct power control (DPC) strategy of three-phase PWM AC/DC converters. In this strategy, the regulation of the dc-bus voltage is based on nonlinear sliding mode controller (SMC), the control of the instantaneous active and reactive power is performed by fuzzy logic controllers (FLC) and also the artificial neural networks (ANN) approach is used to select the switching states of PWM AC/DC converter. The sliding mode control is an effective tool to minimise disturbances. Nevertheless, the chattering phenomenon depicts a major problem for variable structure systems (VSS). To overcome this drawback, a saturation function is employed to decrease chattering effects. The proposed method allows, on the one hand, to steer the dc-bus voltage, the instantaneous active and reactive power to their reference values. On the other hand, it enables to reduce the harmonic disturbances, the power ripples and to realise a unity power factor (UPF) operation. Simulation results are provided to confirm the efficiency, the robustness and the performances of the proposed DPC scheme in different conditions of simulation.","PeriodicalId":38524,"journal":{"name":"International Journal of Power and Energy Conversion","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct power control of three-phase PWM AC/DC converter based on intelligent approach with dc-bus voltage regulation using sliding mode controller\",\"authors\":\"Mustapha Jamma, A. Bennassar, M. Akherraz, M. Barara\",\"doi\":\"10.1504/ijpec.2019.10023890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to present a novel direct power control (DPC) strategy of three-phase PWM AC/DC converters. In this strategy, the regulation of the dc-bus voltage is based on nonlinear sliding mode controller (SMC), the control of the instantaneous active and reactive power is performed by fuzzy logic controllers (FLC) and also the artificial neural networks (ANN) approach is used to select the switching states of PWM AC/DC converter. The sliding mode control is an effective tool to minimise disturbances. Nevertheless, the chattering phenomenon depicts a major problem for variable structure systems (VSS). To overcome this drawback, a saturation function is employed to decrease chattering effects. The proposed method allows, on the one hand, to steer the dc-bus voltage, the instantaneous active and reactive power to their reference values. On the other hand, it enables to reduce the harmonic disturbances, the power ripples and to realise a unity power factor (UPF) operation. Simulation results are provided to confirm the efficiency, the robustness and the performances of the proposed DPC scheme in different conditions of simulation.\",\"PeriodicalId\":38524,\"journal\":{\"name\":\"International Journal of Power and Energy Conversion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power and Energy Conversion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijpec.2019.10023890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power and Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijpec.2019.10023890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Direct power control of three-phase PWM AC/DC converter based on intelligent approach with dc-bus voltage regulation using sliding mode controller
This research aims to present a novel direct power control (DPC) strategy of three-phase PWM AC/DC converters. In this strategy, the regulation of the dc-bus voltage is based on nonlinear sliding mode controller (SMC), the control of the instantaneous active and reactive power is performed by fuzzy logic controllers (FLC) and also the artificial neural networks (ANN) approach is used to select the switching states of PWM AC/DC converter. The sliding mode control is an effective tool to minimise disturbances. Nevertheless, the chattering phenomenon depicts a major problem for variable structure systems (VSS). To overcome this drawback, a saturation function is employed to decrease chattering effects. The proposed method allows, on the one hand, to steer the dc-bus voltage, the instantaneous active and reactive power to their reference values. On the other hand, it enables to reduce the harmonic disturbances, the power ripples and to realise a unity power factor (UPF) operation. Simulation results are provided to confirm the efficiency, the robustness and the performances of the proposed DPC scheme in different conditions of simulation.
期刊介绍:
IJPEC highlights the latest trends in research in the field of power generation, transmission and distribution. Currently there exist significant challenges in the power sector, particularly in deregulated/restructured power markets. A key challenge to the operation, control and protection of the power system is the proliferation of power electronic devices within power systems. The main thrust of IJPEC is to disseminate the latest research trends in the power sector as well as in energy conversion technologies. Topics covered include: -Power system modelling and analysis -Computing and economics -FACTS and HVDC -Challenges in restructured energy systems -Power system control, operation, communications, SCADA -Power system relaying/protection -Energy management systems/distribution automation -Applications of power electronics to power systems -Power quality -Distributed generation and renewable energy sources -Electrical machines and drives -Utilisation of electrical energy -Modelling and control of machines -Fault diagnosis in machines and drives -Special machines