关于Frøyshov不变量和单极Lefschetz数

IF 1.3 1区 数学 Q1 MATHEMATICS
Jianfeng Lin, Daniel Ruberman, N. Saveliev
{"title":"关于Frøyshov不变量和单极Lefschetz数","authors":"Jianfeng Lin, Daniel Ruberman, N. Saveliev","doi":"10.4310/jdg/1683307008","DOIUrl":null,"url":null,"abstract":"Given an involution on a rational homology 3-sphere $Y$ with quotient the $3$-sphere, we prove a formula for the Lefschetz number of the map induced by this involution in the reduced monopole Floer homology. This formula is motivated by a variant of Witten's conjecture relating the Donaldson and Seiberg--Witten invariants of 4-manifolds. A key ingredient is a skein-theoretic argument, making use of an exact triangle in monopole Floer homology, that computes the Lefschetz number in terms of the Murasugi signature of the branch set and the sum of Fr{\\o}yshov invariants associated to spin structures on $Y$. We discuss various applications of our formula in gauge theory, knot theory, contact geometry, and 4-dimensional topology.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"On the Frøyshov invariant and monopole Lefschetz number\",\"authors\":\"Jianfeng Lin, Daniel Ruberman, N. Saveliev\",\"doi\":\"10.4310/jdg/1683307008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an involution on a rational homology 3-sphere $Y$ with quotient the $3$-sphere, we prove a formula for the Lefschetz number of the map induced by this involution in the reduced monopole Floer homology. This formula is motivated by a variant of Witten's conjecture relating the Donaldson and Seiberg--Witten invariants of 4-manifolds. A key ingredient is a skein-theoretic argument, making use of an exact triangle in monopole Floer homology, that computes the Lefschetz number in terms of the Murasugi signature of the branch set and the sum of Fr{\\\\o}yshov invariants associated to spin structures on $Y$. We discuss various applications of our formula in gauge theory, knot theory, contact geometry, and 4-dimensional topology.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1683307008\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1683307008","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

给出有理同调3球$Y$上的一个对合,其商为$3$-球,证明了此对合在约化单极花同调中映射的Lefschetz数的一个公式。这个公式是由Witten关于4流形的Donaldson和Seiberg- Witten不变量的猜想的一个变体所激发的。一个关键的成分是一个束理论论证,利用单极子花同调中的一个精确三角形,根据分支集的Murasugi签名和与$Y$上的自旋结构相关的Fr{\o}yshov不变量的和计算Lefschetz数。我们讨论了我们的公式在规范理论、结理论、接触几何和四维拓扑中的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Frøyshov invariant and monopole Lefschetz number
Given an involution on a rational homology 3-sphere $Y$ with quotient the $3$-sphere, we prove a formula for the Lefschetz number of the map induced by this involution in the reduced monopole Floer homology. This formula is motivated by a variant of Witten's conjecture relating the Donaldson and Seiberg--Witten invariants of 4-manifolds. A key ingredient is a skein-theoretic argument, making use of an exact triangle in monopole Floer homology, that computes the Lefschetz number in terms of the Murasugi signature of the branch set and the sum of Fr{\o}yshov invariants associated to spin structures on $Y$. We discuss various applications of our formula in gauge theory, knot theory, contact geometry, and 4-dimensional topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信