移动人群传感系统的远程交通分析:行人到车辆的场景

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
David Miguel-Santiago, M. E. Rivero-Angeles, L. Garay-Jimenéz, I. Orea-Flores, B. Tovar-Corona
{"title":"移动人群传感系统的远程交通分析:行人到车辆的场景","authors":"David Miguel-Santiago, M. E. Rivero-Angeles, L. Garay-Jimenéz, I. Orea-Flores, B. Tovar-Corona","doi":"10.1177/15501329221133291","DOIUrl":null,"url":null,"abstract":"Crowdsensing systems are developed in order to use the computational and communication capabilities of registered users to monitor specific variables and phenomena in an opportunistic manner. As such, the Quality of Experience is not easily attained since these systems heavily rely on the user’s behavior and willingness to cooperate whenever an event with certain interest needs to be monitored. In this work, we analyze the data acquisition phase, where pedestrians opportunistically transmit to vehicles to further disseminate it in the city according to their trajectory. This highly dynamic environment (sensors and data sinks are mobile, and the number of users varies according to the region and time) poses many challenges for properly operating a crowdsensing system. We first study the statistical properties of vehicular traffic in different regions of Luxembourg City where pedestrians share their computational resources and send data to passing cars. Then we propose an Erlang distribution to model the vehicles’ dwelling times and develop a Markov chain accordingly. We model the system using two different queues: we use a single server queue to model the vehicle traffic, while we use an infinite server queue system to model the pedestrian traffic.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Teletraffic analysis of a mobile crowdsensing system: The pedestrian-to-vehicle scenario\",\"authors\":\"David Miguel-Santiago, M. E. Rivero-Angeles, L. Garay-Jimenéz, I. Orea-Flores, B. Tovar-Corona\",\"doi\":\"10.1177/15501329221133291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowdsensing systems are developed in order to use the computational and communication capabilities of registered users to monitor specific variables and phenomena in an opportunistic manner. As such, the Quality of Experience is not easily attained since these systems heavily rely on the user’s behavior and willingness to cooperate whenever an event with certain interest needs to be monitored. In this work, we analyze the data acquisition phase, where pedestrians opportunistically transmit to vehicles to further disseminate it in the city according to their trajectory. This highly dynamic environment (sensors and data sinks are mobile, and the number of users varies according to the region and time) poses many challenges for properly operating a crowdsensing system. We first study the statistical properties of vehicular traffic in different regions of Luxembourg City where pedestrians share their computational resources and send data to passing cars. Then we propose an Erlang distribution to model the vehicles’ dwelling times and develop a Markov chain accordingly. We model the system using two different queues: we use a single server queue to model the vehicle traffic, while we use an infinite server queue system to model the pedestrian traffic.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221133291\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221133291","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

开发人群感应系统是为了利用注册用户的计算和通信能力,以机会主义的方式监测特定的变量和现象。因此,不容易获得体验质量,因为这些系统在很大程度上依赖于用户的行为和在需要监控具有特定兴趣的事件时进行合作的意愿。在这项工作中,我们分析了数据采集阶段,在该阶段,行人机会主义地将数据传输给车辆,以根据他们的轨迹在城市中进一步传播。这种高度动态的环境(传感器和数据汇是移动的,用户数量根据地区和时间而变化)对正确操作众筹系统提出了许多挑战。我们首先研究了卢森堡市不同地区车辆交通的统计特性,在这些地区,行人共享他们的计算资源,并将数据发送给过往的汽车。然后,我们提出了一个Erlang分布来对车辆的停留时间进行建模,并相应地发展了一个马尔可夫链。我们使用两个不同的队列对系统进行建模:我们使用单个服务器队列对车辆交通进行建模,而我们使用无限服务器队列系统对行人交通进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Teletraffic analysis of a mobile crowdsensing system: The pedestrian-to-vehicle scenario
Crowdsensing systems are developed in order to use the computational and communication capabilities of registered users to monitor specific variables and phenomena in an opportunistic manner. As such, the Quality of Experience is not easily attained since these systems heavily rely on the user’s behavior and willingness to cooperate whenever an event with certain interest needs to be monitored. In this work, we analyze the data acquisition phase, where pedestrians opportunistically transmit to vehicles to further disseminate it in the city according to their trajectory. This highly dynamic environment (sensors and data sinks are mobile, and the number of users varies according to the region and time) poses many challenges for properly operating a crowdsensing system. We first study the statistical properties of vehicular traffic in different regions of Luxembourg City where pedestrians share their computational resources and send data to passing cars. Then we propose an Erlang distribution to model the vehicles’ dwelling times and develop a Markov chain accordingly. We model the system using two different queues: we use a single server queue to model the vehicle traffic, while we use an infinite server queue system to model the pedestrian traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
4.30%
发文量
94
审稿时长
3.6 months
期刊介绍: International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信