二维积分-微分反应-扩散系统的时间周期振荡六方解

Pub Date : 2020-07-01 DOI:10.32917/hmj/1595901630
Shunsuke Kobayashi, T. Sakamoto, Yasuhide Uegata, S. Yazaki
{"title":"二维积分-微分反应-扩散系统的时间周期振荡六方解","authors":"Shunsuke Kobayashi, T. Sakamoto, Yasuhide Uegata, S. Yazaki","doi":"10.32917/hmj/1595901630","DOIUrl":null,"url":null,"abstract":"An oscillatory hexagonal solution in a two component reaction-di¤usion system with a non-local term is studied. By applying the center manifold theory, we obtain a four-dimensional dynamical system that informs us about the bifurcation structure around the trivial solution. Our results suggest that the oscillatory hexagonal solution can bifurcate from a stationary hexagonal solution via the Hopf bifurcation. This provides a reasonable explanation for the existence of the oscillatory hexagon.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A time-periodic oscillatory hexagonal solution in a 2-dimensional integro-differential reaction-diffusion system\",\"authors\":\"Shunsuke Kobayashi, T. Sakamoto, Yasuhide Uegata, S. Yazaki\",\"doi\":\"10.32917/hmj/1595901630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An oscillatory hexagonal solution in a two component reaction-di¤usion system with a non-local term is studied. By applying the center manifold theory, we obtain a four-dimensional dynamical system that informs us about the bifurcation structure around the trivial solution. Our results suggest that the oscillatory hexagonal solution can bifurcate from a stationary hexagonal solution via the Hopf bifurcation. This provides a reasonable explanation for the existence of the oscillatory hexagon.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/hmj/1595901630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/hmj/1595901630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有非局域项的双组分反应扩散体系的振荡六方解。通过应用中心流形理论,我们得到了一个四维动力系统,它告诉我们围绕平凡解的分岔结构。我们的结果表明振荡六边形解可以通过Hopf分岔从静止六边形解分叉。这为振荡六边形的存在提供了一个合理的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A time-periodic oscillatory hexagonal solution in a 2-dimensional integro-differential reaction-diffusion system
An oscillatory hexagonal solution in a two component reaction-di¤usion system with a non-local term is studied. By applying the center manifold theory, we obtain a four-dimensional dynamical system that informs us about the bifurcation structure around the trivial solution. Our results suggest that the oscillatory hexagonal solution can bifurcate from a stationary hexagonal solution via the Hopf bifurcation. This provides a reasonable explanation for the existence of the oscillatory hexagon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信